Shell scenarios, modelling and decision making

Royal Dutch Shell plc
September 6, 2017

#makethefuture
This presentation contains data from Shell’s New Lens Scenarios. The New Lens Scenarios are a part of an ongoing process used in Shell for 40 years to challenge executives’ perspectives on the future business environment. We base them on plausible assumptions and quantifications, and they are designed to stretch management to consider even events that may only be remotely possible. Scenarios, therefore, are not intended to be predictions of likely future events or outcomes and investors should not rely on them when making an investment decision with regard to Royal Dutch Shell plc securities.

It is important to note that Shell’s existing portfolio has been decades in development. While we believe our portfolio is resilient under a wide range of outlooks, including the IEA’s 450 scenario, it includes assets across a spectrum of energy intensities including some with above-average intensity. While we seek to enhance our operations’ average energy intensity through both the development of new projects and divestments, we have no immediate plans to move to a net-zero emissions portfolio over our investment horizon of 10-20 years.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to “joint ventures” and “joint operations” respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates.” The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. No assurance is provided that future dividend payments will match or exceed previous dividend payments. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2016 (available at www.shell.com/investor and www.sec.gov.). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, September 6, 2017. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. This presentation may contain references to Shell’s website. These references are for the readers’ convenience only. Shell is not incorporating by reference any information posted on www.shell.com. We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.
Exploring alternative futures

- Energy system was complicated
- Energy transition and digital: major disruptors
- Past does not predict the future
- Forecasts are inappropriate

- Radically uncertain future
- Complex future: needs agility
 - Scenario thinking
 - Decision-making
- Scenarios are a distinctive Shell capability

From complicated to complex
Scenarios are neither forecasts nor plans

- Scenarios are not forecasts; neither are they our business plan
- Shell considers multiple, bespoke scenarios relevant to decisions
- Scenarios usage ranges from evaluation of individual opportunities, to portfolio choices, to overarching strategy development

Multiple forces may push towards or pull away from the envisaged futures

Scenarios stretch our perspectives
Shell’s strategy
#makethefuture
Using scenarios
Recognising a range of uncertain outcomes

- Consider a range of plausible futures
 - Explore social, political + economic factors
 - Determine context for business environment
 - Model the Future World’s energy systems

- Consider existing and new energy value chains
 - Elements within the value chain
 - Assess investment attractiveness over time
 - Consider the Future Worlds

*This is an example diagram of graphic representations that are considered by the Board. Not based on Shell’s actual portfolio.
Framework for decision making in uncertainty

- Build from ‘Future Worlds’ + value chain analysis
- Consider “minimise maximum regret”
- Make investment and portfolio decisions

External environment and disruptors
Consider **multiple futures** in decision-focused scenarios

Business environment/value chain understanding

Analytic tools
Apply lenses to support the ‘hard’ input to decisions

Decisions based on ‘hard’ and ‘soft’ inputs
From individual decisions to shaping the **aspired portfolio**

Clarity of objectives

Strategy and aspired future

Current portfolio → Aspired portfolio

Energy transition
Introduction
How scenarios inform modelling

- Scenarios explore “how the world will work” in the future, and is an essential front-end input in modelling
- Different parts of the world will develop in their own ways and at different paces
- Technology innovation enables new options
- Resource availability can be a constraint
- Deal with disruptions and non-linear relationships
- Modelling helps to demonstrate the plausibility of the scenarios

The future is not an extrapolation of the past
Shell models

Models underpin scenarios and strategic analysis
World Energy Model (WEM): Estimates global energy demand dynamically

- Estimates energy demand holistically
- Underpinned by demand, choice and supply modules
- Uses resource constraints, build rates and prices to balance supply and demand
- Covers other elements such as efficiency and learning curves, and outcomes like CO$_2$ emissions from energy use

Balances demand choices with supply

100 Years
100 Countries & Regions (Incl. 82 countries individually)
14 Sectors
10 Energy Carriers
18 Energy Sources
WEM: Key drivers for demand

75 specific scenario-based inputs, considered by:
- Sector
- Carrier
- Energy source
- Geography

Population
Economic growth
Environmental pressures
Technology
Resource availability
People’s choices
WEM: Energy Ladders
Estimate energy service needs

- Different development curves by country, by sector
- Developing nations tend to use less energy due to more efficient technologies available now than in the past for developed nations
- Non-linear relationship between GDP growth and energy use
- Energy demand accelerates once industrialisation starts
- Demand growth eases as some uses approach saturation and the economy diversifies from industrial to service sector activity

**Logarithmic scale

The Energy Ladder 1960 – 2016*
The relationship between income and energy use

Primary energy/ (GJ/capita/year)

GDP (PPP) capita (2010 USD)**
WEM: Choice module
Determining the energy mix

- Acknowledges different user preferences for technologies and solutions
- Choices change in response to prices, taxes, subsidies, availability, convenience, values and energy security or policy considerations
- Not all choices will be based on lowest cost options
- Different energy choices are not perfect substitutes

- Consumers choose which energy carrier to deliver their service needs
- Producers decide which primary energy sources to use to satisfy consumer demand

14 Sectors
- Passenger transport
 - Ship
 - Rail
 - Road
 - Air
- Freight transport
 - Ship
 - Rail
 - Road
 - Air
- Residential
 - Heating & Cooking
 - Lighting & Appliances
- Industry & services
 - Heavy
 - Other
 - Services
 - Non-energy

10 Carriers
- Electricity (Centralised / Distributed)
- Liquid Fuels
- Heat (Centralised / Distributed)
- Gaseous Fuels
- Solid Fuels
- Biomass (Traditional / Commercial)
- Hydrogen

18 Energy Sources
- Oil
- Natural Gas
- Coal
- Nuclear
- Hydro-electricity
- Biofuels – 1st Gen
- Biofuels – 2nd Gen
- Biofuels – Marine
- Biofuels – Traditional
- Biofuels – Commercial
- Waste
- Geothermal – Hydrothermal
- Geothermal – Engineered
- Solar – Photovoltaic
- Solar – Thermal
- Wind
- Tidal
- Wave
WEM: Example outputs
A myriad of different “slices” through the output data set possible

- The WEM considers the global energy system as one
- What happens in China reverberates throughout the rest of the world

These are not forecasts, but example outputs of scenarios that have been modelled
Source: Shell New Lens Scenarios
WEM: Example outputs
Comparing two scenarios for consumer choices of what type of energy they want to use

Decarbonisation and efficiency go hand-in-hand with electrification of the energy system

- Mountains explores the widespread success of shale gas and strong government policy to reduce oil use in Transport and use of CCS to reduce CO₂ emissions
- Oceans explores a highly economically efficient world and strong uptake of Renewables to reduce CO₂ emissions

These are not forecasts, but example outputs of scenarios that have been modelled
WEM:
Example outputs
Comparing two scenarios for primary energy mix as a result of different policy, GDP, resources and innovation assumptions

Of the New Lens Scenarios, Mountains’ drivers result in ‘earliest’ peak oil demand; Oceans’ drivers result in ‘latest’ peak oil supply

- Mountains explores the widespread success of shale gas and strong government policy to reduce oil use in Transport and use of CCS to reduce CO₂ emissions
- Oceans explores a highly economically efficient world and strong uptake of Renewables to reduce CO₂ emissions

These are not forecasts, but example outputs of scenarios that have been modelled
Global Energy Resources database
Essential for projecting the future energy mix

- Assessment as at 2015
 - Oil, gas and coal expected remaining resources
 - Renewables annual production potential
 - Used for Shell scenarios
 - Data will be available for download

Insights:
- Sufficient renewable resources, but unequal distribution
- Sufficient fossil resources for a decarbonised and efficient world, but potential for stresses otherwise

Note: Figures for fossil energy and renewables are not directly comparable. The figures for fossil energy are for the stock of resources in place, whereas the renewable figures represent an annual rate of production.

Comprehensive overview of all available primary and renewable energy resources per country
Global Supply Model (GSM)
Estimates oil and gas production

- Estimates production at resource category and country level until 2100
- Each resource category develops through its own resource maturation chain
- Cost of supply curves control how much resource is economic to mature at a given price
- Includes an environmental footprint module

Includes:
- Top down analysis for yet-to-find resources
- Bottom-up analysis for undeveloped and developed resources
- Depletion of existing production and
- Reserves growth due to technology
GSM: Example outputs
Projecting oil and gas supply by type, region and resource category

Production varies with oil price, technology progress and (geo)political assumptions

These are not forecasts, but example outputs of scenarios that have been modelled
Example outputs:

Modelling disruption potential of Electric vehicles (EV)

An aggressive EV scenario

Key assumptions:

- Battery costs continue to decline
- Regulation strengthens (e.g. ban internal combustion engine (ICE) vehicles in cities)
- OEM vehicle manufacturers assumed to continue to develop ICE efficiencies

Global vehicle sales

<table>
<thead>
<tr>
<th>Year</th>
<th>Million vehicles/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
</tr>
</tbody>
</table>

Global vehicle fleet

<table>
<thead>
<tr>
<th>Year</th>
<th>Million vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
</tr>
</tbody>
</table>

EV share in new sales may grow from 1% today to reach 10% by 2025, displacing less than 0.8 mboe/d

This is not a forecast, this is one example scenario
Example outputs:

Oil demand context
An aggressive EV scenario

- Passenger road transport makes up around a third of global oil use
- Oil demand has fallen in OECD since 2005
- Non-OECD oil demand growth 2.5 times the impact of OECD demand decline
- EV mainly impacts passenger road transport (a third of total oil demand)
- ICE efficiency has a much bigger impact over this period
- Overall demand continues to grow underpinned by non-OECD growth

Global LHCF consumption by Sector

EJ/year (energy carrier)

Source: Shell WEM Disruption example
This is not a forecast, this is one example scenario
Summary

- ‘Complicated to complex’ context
- Understand multiple futures to frame decision-making
- Scenario thinking and holistic modelling is key
- Use multiple lenses, including ‘minimise maximum regret’
- Agile decision-making needed through energy transition
Biographies
Guy Outen was appointed Executive Vice President, Strategy & Portfolio for Royal Dutch Shell plc in 2014.

Guy has worked in various commercial, new business and finance roles across all parts of Shell’s business. From 2009 to 2013 he was the EVP Commercial, New Business & LNG. LNG became part of the separate Integrated Gas business from 2013. Before 2009 Guy was EVP, EP Strategy & New Business and before that he was the Chief Financial Officer for Gas & Power, Shell Group Chief Internal Auditor, the CFO for Shell Development Australia and has also been responsible for Retail operating processes, split off and merged Shell Australia’s chemical operations into the Montell JV, worked in Crude Oil Trading and a Coal JV.

Guy has an economics and commerce background, B.Com (Hons), M.Com, and is a Fellow CPA Australia.

Guy is married with three sons and enjoys sport, music and motorcycling.
Wim Thomas
Chief Energy Adviser

Wim Thomas is Chief Energy Adviser and leads the Energy Analysis practice in Shell.

His team is also responsible for Shell’s long-term global energy scenarios, informing Group Strategy. He has been with the Shell Group for some 33 years, with prior positions in drilling operations, subsurface reservoir management and commercial and regulatory affairs in gas.

Wim is chairman of the UK national committee of the World Petroleum Council and is a former chairman of the British Institute of Energy Economics. He holds a postgraduate degree in Maritime Technology from Delft University in The Netherlands.

Wim has been in his current role for the past 14 years. He advises Shell companies on a wide range of energy issues, including global supply and demand, regulations, energy policy, markets, pricing and industry structure.
Additional information
Board and future business environment

<table>
<thead>
<tr>
<th>Mega Trends</th>
<th>Macroeconomics</th>
<th>Uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beliefs</td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Energy Transition</td>
<td>Sustained era of transition & volatility</td>
<td>Political tensions & regional instability</td>
</tr>
<tr>
<td>Digitalisation</td>
<td>Emerging markets drive Global GDP increases</td>
<td>Impact of digital technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market</th>
<th>Example:</th>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbon demand growth + supply required</td>
<td>Key pricing mechanisms</td>
<td></td>
</tr>
<tr>
<td>Renewables contribution increases significantly</td>
<td>Energy transitions impact</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry</th>
<th>Example:</th>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology & scale alone insufficient</td>
<td>Winning business models & capabilities</td>
<td></td>
</tr>
</tbody>
</table>
Shell scenarios
Identifying emerging challenges to guide us through change

Scenarios stretch our perspectives and help us to make crucial choices in uncertain times.

Globalisation, liberalisation, technology diffusion; environmental pressures; Asian growth
Social fragmentation & cohesion dilemmas; re-emergence of State impact
Era of volatile energy transitions
Changing sources of influence & decision making power

Trends

Publications

1965-1980
First scenarios

‘92: Global Scenarios ‘92–20
‘95: Global Scenarios ‘96–20
‘95: Long Term Energy Scenarios
‘98: Global Scenarios ‘98–20

‘01: Energy Needs, Choices and Possibilities: Scenarios to 2050
‘02: People and Connections Scenarios
‘05: Global Scenario’s to 2025
‘07: Signals & Signposts
‘08: Shell energy scenarios to 2050
‘11: Signals & Signposts
‘13: New Lens Scenarios
 • ‘14: New Lenses on Future Cities
 • ‘16: A Better Life with a Healthy Planet: Pathways to Net-Zero Emissions

Internal unpublished scenarios focused on specific developments and challenges
Darker-coloured countries are modelled individually. Lighter-coloured countries are modelled collectively as ‘Rest of’ regions, such as ‘Rest of West Africa’.
GSM: Countries modelled