SHELL ECO-MARATHON 2017
OFFICIAL RULES CHAPTER I
FOREWORD

Dear Shell Eco-marathon Participants,

As Shell Eco-marathon enters its 33rd season in 2017, we remain committed to providing a challenging platform for the new generation of young engineers to design, build, test and drive the world’s ultimate-energy-efficient vehicles.

In 2017 we will start taking important steps to introduce innovative technologies and improve the energy efficiency marks achieved in the competition.

To allow novel technologies to be included in your vehicles, the Shell Eco-marathon Technical Team will install a joulemeter between the vehicle battery and the vehicle electrical system, allowing us to measure all electrical energy provided by the battery. This opens the door to innovative electro technologies that enhance the vehicle’s performance, such as engine oil and cooling pumps, electric turbo compounding, electromechanical variable valve timing, compressors/blowers, etc. At this time, the use of electric fuel pumps remains forbidden. To encourage a maximum of innovation from our teams, in 2017 we will measure the vehicle electrical energy usage, and provide the values to all teams, but only in 2018 this measurement will be officially included in the energy-efficiency results calculation.

Another innovation to further the opportunities for the increase of energy efficiency is the introduction of on-board computers for all vehicles which allows us to provide teams with a rich telemetry data set of their competition runs. This will give teams better insight into their vehicle and driver performance through own data analysis and comparison with others.

Following the tremendous success of the Drivers’ World Championship at the 2016 season finale in London, we will continue to evolve this exciting race format to its full potential. One key step is the alignment of the energy categories with the mileage challenge. While all seven energy types remain available for competing teams to choose from, the Shell Eco-marathon competition will be simplified into the three principle drivetrain technologies: internal combustion (IC), battery-electric (BE) and hydrogen fuel cell (H₂).

Together with the Shell Eco-marathon Technical Team, I strongly recommend to read this document carefully. If you have any questions or doubts, do not hesitate to contact us on the regional Shell Eco-marathon email or Facebook groups.

I wish you success for your entry and look forward to seeing at one of our events in the 2017 season.

Norman Koch
Shell Eco-marathon Global Technical Director
TABLE OF CONTENTS

1. **ORGANISATION** ... 5
 ABOUT THE RULES ... 5
 ARTICLE 1: ACCEPTANCE .. 6
 ARTICLE 2: ENTRIES .. 6
 ARTICLE 3: TRACK ACCESS CONDITIONS ... 7
 ARTICLE 4: IDENTIFICATION .. 7
 ARTICLE 5: COMPLIANCE .. 7
 ARTICLE 6: PROTESTS .. 8
 ARTICLE 7: DISPUTES ... 8
 ARTICLE 8: PENALTIES ... 8

2. **SAFETY** ... 9
 ARTICLE 9: SAFETY RULES .. 9

DRIVING RULES .. 9
 ARTICLE 10: DRIVING KNOWLEDGE AND TEST .. 9
 ARTICLE 11: DRIVING UNDER THE INFLUENCE OF ALCOHOL/ILLEGAL SUBSTANCES 9
 ARTICLE 12: BRIEFING ... 10
 ARTICLE 13: ACCESS TO THE TRACK AND TEST LAP .. 10
 ARTICLE 14: PUSHING THE VEHICLE ... 10
 ARTICLE 15: RACE DIRECTION .. 10
 ARTICLE 16: RADIO COMMUNICATION ... 10
 ARTICLE 17: OVERTAKING .. 10
 ARTICLE 18: BREAKDOWNS AND OTHER INCIDENTS .. 11
 ARTICLE 19: OFF-TRACK VEHICLE MOVEMENTS ... 11

DRIVER AND EQUIPMENT ... 11
 ARTICLE 20: DRIVER WEIGHT .. 11
 ARTICLE 21: HELMETS .. 11
 ARTICLE 22: DRIVER CLOTHING .. 12
 ARTICLE 23: DRIVER COMFORT .. 12

GENERAL SAFETY .. 12
 ARTICLE 24: EQUIPMENT AND MATERIALS .. 12

3. **VEHICLE DESIGN** ... 14
 3A – GENERAL ... 14
 ARTICLE 25: VEHICLE DESIGN ... 14
CHAPTER I

ARTICLE 26: CHASSIS/MONOCOQUE SOLIDITY ... 15
ARTICLE 27: PROPULSION AND ENERGY STORAGE SYSTEM ISOLATION 15
ARTICLE 28: VISIBILITY ... 16
ARTICLE 29: SAFETY BELTS ... 16
ARTICLE 30: VEHICLE ACCESS .. 17
ARTICLE 31: HORN .. 17
ARTICLE 32: ON-BOARD FIRE EXTINGUISHER .. 17
ARTICLE 33: DRIVER POSITION .. 18
ARTICLE 34: CLUTCH AND TRANSMISSION .. 18
ARTICLE 35: EXHAUST SYSTEM ... 18
ARTICLE 36: SOUND LEVEL .. 18
ARTICLE 37: EMERGENCY SHUT-DOWN ... 19
ARTICLE 38: ADDITIONAL INSPECTIONS ... 20

3B – PROTOTYPE GROUP ... 20
ARTICLE 39: DIMENSIONS .. 20
ARTICLE 40: NOT USED ... 20
ARTICLE 41: TYRES, WHEELS, AXLES AND WHEEL HUBS ... 20
ARTICLE 42: TURNING RADIUS AND STEERING ... 21
ARTICLE 43: BRAKING .. 21

3C – URBANCONCEPT GROUP ... 22
ARTICLE 44: DEFINITION .. 22
ARTICLE 45: DIMENSIONS .. 22
ARTICLE 46: VEHICLE BODY ... 22
ARTICLE 47: TURNING RADIUS AND STEERING ... 23
ARTICLE 48: WHEELS .. 23
ARTICLE 49: TYRES .. 24
ARTICLE 50: LIGHTING ... 24
ARTICLE 51: BRAKING .. 24
ARTICLE 52: WET WEATHER RUNNING ... 25

4. ENERGY SOURCES ... 26

4A – GENERAL ... 26
ARTICLE 53: ENERGY TYPES ... 26
ARTICLE 54: RESULTS CALCULATIONS ... 26
ARTICLE 55: FUELS SUPPLY AND HANDLING ... 28
ARTICLE 56: NOT USED ... 28
ARTICLE 57: VEHICLE ELECTRICAL SYSTEMS .. 28
ARTICLE 58: TECHNICAL DOCUMENTATION ... 30
4B – INTERNAL COMBUSTION ENGINES (LIQUID FUELS) .. 34
ARTICLE 59: PROPULSION ... 34
ARTICLE 60: OTHER ON-BOARD ENERGY SOURCES .. 34
ARTICLE 61: FUEL TANKS [WITH THE EXCEPTION OF HYDROGEN AND CNG] 34
ARTICLE 62: FUEL SYSTEM ... 35
ARTICLE 63: VEHICLES USING HYBRID TECHNOLOGY .. 36
ARTICLE 64: STARTER ... 36

4C – ELECTRIC PROPULSION ... 37
ARTICLE 65: FUEL CELL POWERED VEHICLES .. 37
ARTICLE 66: NOT USED ... 40
ARTICLE 67: BATTERY ELECTRIC VEHICLES ... 40

4D – INTERNAL COMBUSTION (GASEOUS FUEL) ... 42
ARTICLE 68: CNG ... 42

5. ON-VEHICLE TELEMETRY EQUIPMENT ... 44
ARTICLE 69: GENERAL ... 44
ARTICLE 70: ONBOARD COMPUTER ... 44
ARTICLE 71: EXTERNAL ANTENNAE .. 44
ARTICLE 72: HYDROGEN FLOW METER ... 44
ARTICLE 73: LIQUID FLOWMETER .. 44
ARTICLE 74: JOULEMETERS ... 44

6. AWARDS AND PRIZES .. 45
6A – ON-TRACK AWARDS ... 45
ARTICLE 75: ON-TRACK AWARD OVERVIEW AND PRIZES .. 45

6B – OFF-TRACK AWARDS ... 46
ARTICLE 76: OFF-TRACK AWARD OVERVIEW AND PRIZES 46
ARTICLE 77: COMMUNICATIONS AWARD .. 46
ARTICLE 78: VEHICLE DESIGN AWARD .. 48
ARTICLE 79: TECHNICAL INNOVATION AWARD ... 49
ARTICLE 80: SAFETY AWARD ... 49
ARTICLE 81: PERSEVERANCE AND SPIRIT OF THE EVENT AWARD 50
ARTICLE 82: INTELLECTUAL PROPERTY .. 50
1. ORGANISATION

ABOUT THE RULES

a) The full Rules for all Shell Eco-marathon 2017 events are comprised of the Shell Eco-marathon Official Rules 2017 Chapter I, hereinafter referred to as “Official Rules” (this document) and the specific Chapter II of the region or location where Shell Eco-marathon takes place, which can be downloaded from the ‘For Participants’ section of the Shell Eco-marathon website once available.

b) It is the responsibility of every participating team to ensure the full Rules are read and understood. In order to highlight rule changes and aid the understanding of frequently misunderstood rules several tools have been used in this document:

i. Text set in red indicates a change/addition/amendment to the previous year’s Rules.

ii. Text set in italic indicates a note or explanation of the rule above to aid its understanding.

c) Links are used throughout this document to improve navigation.

d) Hyperlinks to Tech Tips videos are used throughout this document to explain certain rules and illustrate acceptable and non-acceptable solutions.

e) In this document functions and roles are defined as follows:

f) ‘Organisers’ – the specific Shell company that organises the Shell Eco-marathon event in a particular region as named in Chapter II, and all persons acting on its behalf.

g) ‘Team’ – group of individuals with a team name and one vehicle that has been accepted for entry to the Shell Eco-marathon competition.

h) ‘Participant’ – member of a Team.

i) ‘Team Manager’ – a Participant that has been appointed on the event registration document as single focal point for his/her team towards the Organisers.

j) ‘Faculty Advisor’ – a professional staff member of the educational institute which the Team represents.

k) ‘Race Director’ – person appointed by the Organisers, who is responsible for managing and sanctioning all on-track activities.

l) ‘Track Marshall’ – person appointed by the Race Director to act on his/her behalf, in particular to ensure on-track safety and observe on-track rule compliance.

m) ‘Fuel Marshall’ – person appointed by the Organisers, works as member of the technical team and supervises fuelling activities in line with the requirements of these rules.

n) ‘Technical Director’ – person appointed by the Organisers, who is responsible for ensuring the technical standards and integrity of the Shell Eco-marathon competition.
Article 1: ACCEPTANCE

a) Applications to enter the competition must be made via the online registration tool on the Shell Eco-marathon website. The Organisers will review all applications and will select Teams based on the quality of their proposed entry and historical successes from previous Shell Eco-marathon events. The criteria for the historical successes will include achieving valid runs, completing technical inspection, and demonstrating a readiness to compete upon arrival at the event. In addition, the Organisers reserve the right to invite Teams who represent the spirit of this competition.

b) By fact of their entry, Participants accept all provisions of the Official Rules and agree to abide by all decisions made by the Organisers. All decisions by the Organisers and the Race Director on any part of these Rules will be final and binding. The Organisers reserve the right to add, modify or delete any article of the Official Rules. In such an event, the Teams will be notified. The Organisers are solely empowered to pronounce in cases not provided for in the Official Rules.

c) The Organisers reserve the right to modify, postpone or cancel the competition for any reason including for reasons of force majeure due to, including but not limited to, adverse or extreme weather conditions, the occurrence of a natural disaster, acts of terrorism or safety concerns. No claims for compensation will be accepted.

d) The Participant is aware that photo, audio and video recordings will be made of the event. By entering Shell Eco-marathon, the Participant permanently relinquishes all rights in respect of these photos, audio and video recordings, which are made by third parties authorised by the Organisers, the Organisers and its affiliates. Shell companies may use said photos, audio and video material for internal and external communications and own presentations (including but not limited to promotions, advertising, internet presence, TV and radio reports and press reports).

Article 2: ENTRIES

a) Shell Eco-marathon is an academic educational programme. All Teams wishing to enter must be affiliated with an educational institution and their participation must be endorsed by it. Educational institutions eligible for Shell Eco-marathon participation are Universities, Colleges and secondary schools preparing students for higher education degrees, vocational training certificates, professional certificates or official second-level school-leaving examinations.

b) For each entry, a Team Manager, a Driver and a Faculty Advisor must be designated. A Reserve Driver may also be designated.

c) The Team Manager must be a student member of the team currently enrolled at the institution. In case all team members are legal minors, the Faculty Advisor has to act as Team Manager.

d) The Team Manager can only be responsible for one vehicle. He/she may also be a Driver for that vehicle, but only for that vehicle.

e) The Team Manager is the Team’s sole official liaison with the Organisers. All information will be addressed to him/her. For the purposes of the project, he/she will be responsible for the Team, must speak on behalf of the Team and must be able to understand and speak English.

f) The eligibility criteria for Drivers are detailed in the relevant section of Chapter II. The Driver and Reserve Driver must be students of the educational institution in question. The Driver and the
Reserve Driver for one vehicle cannot be the Driver or Reserve Driver for another vehicle. Both must be able to speak and understand English.

g) Each interested Team must apply to compete in the regional Shell Eco-marathon mapped to their country. Attendance at another regional Shell Eco-marathon event is subject to decision of the relevant Organisers.

Article 3: TRACK ACCESS CONDITIONS

During both the practice runs and the competition, all vehicles must comply with the technical and safety rules of the event. Whenever the track is entered, the vehicle body must be in place and bear all the competition numbers, sponsor stickers and Shell logos required by the Official Rules. Organisers will supply these numbers and logos.

Article 4: IDENTIFICATION

a) Logos, official sponsor stickers and racing numbers must be fixed to the vehicle body in accordance with the diagram provided (see Chapter II) such that they can be clearly read during any public presentation, in promotional films and on all photographs.

b) Under no circumstances may the Shell logos, the sponsor stickers or racing numbers be modified, either on the vehicle or on any other documentation. It is prohibited to cut the stickers supplied by the Organisers. Their dimensions are as follows:
 i. For each side and for the front of the vehicle: a Shell logo, 20 x 21.5 cm.
 ii. For each side and for the front of the vehicle: racing numbers, 20 x 26 cm.
 iii. For each side, on the lower part of the body: a sponsor sticker, 77 x 8 cm.

c) A mandatory 10 cm space must be left free on all four sides of the Shell logo, and it should be placed with the base parallel to the ground (not at an angle).

d) Any other sponsor names/logos must be smaller than the Shell logo. Each sponsor sticker must fit within a maximum area of 400 cm² (empty space included).

e) The trademarks or logos of tobacco companies and alcoholic drinks producers are prohibited. Trademarks and logos of other energy companies and direct competitors to event sponsors require the prior written approval of the Organisers. This rule applies to all vehicles and all team members’ apparel.

f) In the event of a breach of this rule, the Organisers reserve the right to remove any sponsor logos.

g) All vehicles are subject to the Organisers’ approval concerning these provisions.

Article 5: COMPLIANCE

a) Only those vehicles that comply with the present Official Rules are allowed to participate. No vehicle will be allowed on the track for practice or competition until the Organisers have approved it. The decisions of the Organisers are final in all matters concerning the compliance of vehicle design and construction with the present Official Rules.
b) The Organisers reserve the right to rescind vehicle approval upon further or more detailed checks. The Organisers must be notified of any modifications to the vehicle after inspection. Non-compliance with this rule will lead to vehicle disqualification.

c) Vehicles complying with all safety rules but not with some of the other technical rules will not qualify for the competition, however may be allowed on the track for practice or demonstration at the discretion of the Technical Director.

Article 6: PROTESTS
The Team Manager is the only person authorised to lodge protests. Protests must be brought to the attention of the Technical Director via the results desk. Protests must be lodged within the following times:

a) Vehicles: before track closure on the current day.

b) Team and Driver behaviour: within 30 minutes following the end of the attempt.

c) Results: within 1 hour after the result of an attempt has been posted.

Article 7: DISPUTES
In the event of any disputes, all decisions made by the Race Director on protests and disputes are binding and final.

Article 8: PENALTIES

a) Non-compliance with the driving rules will result in a formal warning, invalidation of the best overall attempt or disqualification of the Team, depending on the severity of the breach.

b) The Organisers will exclude, disqualify or otherwise penalise any Participant who, in the judgement of the Race Director, has gained an unfair advantage as a result of any breach of these Official Rules, hindrance of other Participants, departure from the normal course, or any act or omission capable of misrepresenting performance, especially with regard to fuel consumption or method of propulsion.

c) During the competition, the Driver or the Team Manager must report to the Race Director any movement made or attempted by means other than the vehicle’s own motive power. In such an event, the attempt in question will not be taken into account. If this type of incident is not reported, all the Team’s attempts will be invalidated.

d) The Organisers will apply the following penalties:

 1st infraction: Formal warning.
 2nd infraction: Best overall attempt invalidated at the end of the competition.
 3rd infraction: Immediate Team disqualification.
2. SAFETY

Article 9: SAFETY RULES

a) As with any Motorsport activity there should be an understanding that certain inherent risks will be present. Recognising and controlling these risks are vital for the well-being of people and local surroundings. Safety is an essential consideration for the Organisers. These Rules are to protect all individuals and surrounding areas and are in no way intended to curtail the spirit of the competition. Any activity deemed unsafe or outside of the spirit of the event will be met with appropriate action by the event Organisers.

b) Therefore, compliance with safe driving and sporting rules, as well as any instructions given by Track Marshalls is mandatory for everyone. All Participants must comply with the safety measures and must notify Organisers about any anomalies or incidents. In the event that dangerous conditions are present leave the area immediately. During the event the paddock area will be monitored by the Organisers to assist Teams to comply with safe practices.

c) The Race Director is responsible for and has the final authority in determining the safe conditions for track operations in regards to weather.

d) Non-compliance with any of these Rules may lead to disqualification from the competition at the sole and absolute discretion of the Organisers.

e) Electrical safety in the team paddocks is of critical importance in Shell Eco-marathon events and attention is drawn to Article 24: and Article 57:.

DRIVING RULES

Article 10: DRIVING KNOWLEDGE AND TEST

a) Only the registered Driver and the Reserve Driver will be authorised to drive the vehicle.

b) Drivers may be questioned about their knowledge of the driving rules during inspection. The Organisers reserve the right to deny track access to Drivers with insufficient knowledge of the Rules.

c) Driving on-track: In the interest of safety it is important that Drivers learn and apply smooth and predictable driving techniques, e.g. thinking well ahead, avoiding sudden directional changes, and being fully aware of other vehicles around them.

Article 11: DRIVING UNDER THE INFLUENCE OF ALCOHOL/ILLEGAL SUBSTANCES

a) Driving under the influence of any alcohol and or illegal substance(s) is forbidden. This applies to all Drivers and Reserve Drivers entering the track.

b) Procedures for alcohol or substance testing are detailed in Chapter II.

c) Any breach will be penalized in line with Article 8: and the following additional penalties:
 i. Any alcohol and/or substance related breach of the rules will be treated at least as ‘2nd infraction’ of the Team, even if no prior violation has occurred.
 ii. In addition, the affected Driver is immediately banned from track access as long as he/she is under the Influence. A Reserve Driver may substitute the Driver if he/she is eligible to drive.
iii. Any second alcohol and/or substance related infraction will lead to the immediate disqualification of the entire Team.

Article 12: BRIEFING

The attendance of the daily Drivers’ Briefing is mandatory for the Team Manager and all registered Drivers every day. Failure in attending these Briefings by the Team Managers and Drivers will disqualify the team from practicing and/or competing that day.

Article 13: ACCESS TO THE TRACK AND TEST LAP

a) Vehicles must pass a safety inspection prior to accessing the track for practice runs. A safety sticker will be clearly affixed once the vehicle has passed the inspection.

b) For practice runs on both, the test track and the competition track, only vehicles with a safety sticker will be allowed on the track.

c) For the competition, only vehicles with safety and technical inspection stickers will be allowed to compete.

d) The Organisers will allow opportunity for Team Managers and Drivers to inspect the track, i.e. before any vehicles are allowed on the track. For further details please refer to Chapter II.

e) After pre-start measurements have been completed, teams must be ready to start their attempt within two minutes or return to the paddock.

Article 14: PUSHING THE VEHICLE

At no time on the race track are drivers allowed to push their vehicle or have it pushed, including to start the run or to cross the finish line.

Article 15: RACE DIRECTION

It is forbidden to drive in reverse gear or to drive against the race direction.

Article 16: RADIO COMMUNICATION

The use of hand-held communications is forbidden in the vehicle. However, the use of a “hands-free” kit is allowed as long as both hands of the driver remain on the steering system.

Article 17: OVERTAKING

Drivers are required to give clear passage for other vehicles wishing to overtake.

a) Drivers in overtaking vehicles must sound their horn and pass with caution. The Driver of the overtaking vehicle is responsible for the safety of the manoeuvre.

b) Drivers of the vehicles being overtaken must use their mirrors and must not change course suddenly.

c) On the track, overtaking is authorised on both the right and the left, as long as the above-mentioned safety rules are followed.
Article 18: BREAKDOWNS AND OTHER INCIDENTS

a) Intentional stopping on the track is forbidden unless it is required by the competition, e.g. for UrbanConcept vehicles.

b) The Driver is allowed 30 seconds to attempt to re-start the vehicle from within its driving position.

c) If a vehicle breaks down or is involved in a minor disabling accident on the track, the Driver must immediately make every attempt to drive the vehicle to the side of the track and wait in the vehicle for the Track Marshalls to arrive.

d) In an emergency, the Driver must get out of the car and wait in a safe place off the track for the Track Marshalls to arrive and recover him/her and the vehicle.

e) It is forbidden to carry out repairs on the track. In the event of a flat tyre, even when near the starting line, a new start will not be granted for the attempt in question.

Article 19: OFF-TRACK VEHICLE MOVEMENTS

a) All vehicles must be parked inside the designated paddock area or directly in front of it. When off the track, vehicles must be moved without the use of the engine. They must be pushed or pulled. Test-driving in the paddock area is forbidden.

b) Any breaches and any unsafe or unfair behaviour brought to the attention of the Organisers could result in a penalty.

DRIVER AND EQUIPMENT

Article 20: DRIVER WEIGHT

a) The minimum Driver Weight is:
 - Prototype vehicles: 50 kg
 - UrbanConcept vehicles: 70 kg

b) The Driver Weight is defined as the weight of the person driving the vehicle including full driving gear and communication devices. If the Driver Weight does not meet the minimum weight requirement, ballast needs to be fitted to the vehicle. This ballast must be provided by the Team, in form of scuba diving weights or rectangular metal plates. No other form of ballast is permitted. Any ballast must be effectively secured to the vehicle chassis to ensure Driver safety in the event of collision or rollover, and it must be easily detachable for weighing.

c) Drivers (in full driving gear, including communication devices) and their ballast may be weighed before or after each attempt. A weight loss of up to 1 kg during an attempt will be tolerated.

Article 21: HELMETS

a) For practice and competition, Drivers must wear full-face or three quarter helmets suitable for motorsport activities. Bicycle/riding/skating/luge type helmets are not permitted. Helmet labels must be clearly readable. Helmets worn by all Drivers will be subject to inspection.

b) All helmets must be affixed with a face shield (or visor). The face shield (or visor) must cover all of the face down to below the driver's nose. Tinted face shields or sun glasses to be worn under the face shield are permitted. The helmets must correctly fit the Driver and be secured by a chin strap.
Article 22: DRIVER CLOTHING

a) All Drivers must wear a racing suit as the outermost layer of clothing (fire retardant). Casual clothing and street wear are not permitted. Wearing synthetic clothes or synthetic underwear is strictly forbidden for Drivers when seated in their vehicle.

b) Gloves (covering all fingers fully) and shoes are required and must be provided by the team; bare feet or socks only are prohibited. Fire retardant gloves are required.

Article 23: DRIVER COMFORT

Please note that in the event of hot weather conditions, high temperatures could be attained inside the vehicle, potentially affecting Driver comfort and/or causing heat stress.

a) It is recommended to properly ventilate the inside of the vehicle to provide cooling to the Driver.

b) It is recommended to provide sufficient drinking liquids to the driver for the duration of an attempt. If fluid containers are provided to the Driver(s), these containers must be hands free, e.g. camel-back style or bottles secured inside the Driver’s compartment with flexible feed straw.

c) It is recommended to equip the vehicle with an effective sunscreen.

d) The Organisers reserve the right to restrict individual driving time by any means at their sole discretion, e.g. shortening the distance, requesting driver change (pit stop), limit maximum number of attempts per Driver per day, etc.

GENERAL SAFETY

Article 24: EQUIPMENT AND MATERIALS

Teams are required to provide and use the following at the event:

a) Gloves for general work: leather or canvas material.

b) Gloves for fuel or motor oil handling: Chemical resistant.

c) Safety glasses for all Team members. (Disposable types are permitted).

d) Hearing protection for all Team members. (Approved earplugs or muffs).

e) Duct tape to secure any cords or cables lying on the pit floor.

f) Lift stands or appropriate raised platform for vehicle tuning and repairs.

g) Own tools and materials.

h) Each Team must provide an extinguisher for their pit area with a minimum extinguishing capacity of 1 kg in addition to the vehicle’s extinguisher suitable for “ABC” class of fires. The extinguisher must be accessible in the Team’s specific pit area. The extinguisher must be full (i.e. never used) and have a manufacturing or expiry date. If the extinguisher does not have an expiry date the unit will be acceptable (i.e. valid) if it was manufactured within the past three years. Any extinguisher beyond the expiry period that has been re-inspected and tagged with an official dated recertification will also be permitted.
i) Effective equipment suitable to mitigate and/or control Lithium-based battery fires must be used during battery charging whether the battery is charged in or outside of the vehicle. The equipment must prevent or contain the spread of any fire or battery event during charging. Equipment that may be used includes:

 i. A battery charging bag that is designed for containment of a Lithium battery fire, or

 ii. A fire proof blanket that can be placed over AND under the battery being charged. The blanket must be of sufficient size to fully cover and contain any potential fire or battery event.

j) Transportation and storage

 i. Participants need to seek early guidance regarding the shipment of any hazardous materials (including but not limited to flammable liquids, batteries, pressurized containers, fire extinguishers, etc.) from their freighting company to adhere to current international and national legislations.

 ii. Certain hazardous materials may not be permissible to ship by air freight and participants need to source these materials in the event location (well in advance of the event) or ship by different means.

k) Electrical safety

 i. All electrical equipment used must be properly fused.

 ii. Electrical cables must be in good condition and appropriate for the equipment it is intended for.

 iii. High wattage electrical appliances should not be plugged into a multiple plug strip. If teams are using a multi plug strip it must have an internal fuse or RCD.

ATTENTION

Review all sections of the Official Rules as they contain further safety matters specific to the topic.
3. VEHICLE DESIGN

3A – GENERAL

Article 25: VEHICLE DESIGN

a) During vehicle design, construction and competition planning, participating Teams must pay particular attention to all aspects of safety, i.e. Driver safety, the safety of other Team members and spectator safety.
 i. Prototype vehicles must have three or four running wheels, which under normal running conditions must be all in continuous contact with the road.
 ii. UrbanConcept vehicles must have exactly four wheels, which under normal running conditions must be all in continuous contact with the road. A fifth wheel for any purpose is forbidden.

b) Aerodynamic appendages, which adjust or are prone to changing shape due to wind whilst the vehicle is in motion, are forbidden.

c) Vehicle bodies must not include any external appendages that might be dangerous to other Participants; e.g. pointed part of the vehicle body. Any sharp points must have a radius of 5 cm or greater, alternatively they should be made of foam or similar deformable material.

d) Vehicle body panels must be rigid with an appropriate stiffness not to be prone to changing shape due to wind.

e) The vehicle interior must not contain any objects that might injure the Driver during a collision.

f) Windows must not be made of any material which may shatter into sharp shards. Recommended material: Polycarbonate (e.g. Lexan)

g) Any cover of the energy compartment (engine/motor/transmission/battery, etc.) should be easy to open for quick inspection access.

h) All parts of the drive train, including fuel tank, hydrogen system components, etc. must be within the confines of the body cover.

i) All objects in the vehicle must be securely mounted. Bungee cords or other elastic material are not permitted for securing heavy objects like batteries.

j) All vehicles must have a solid floor and frame that prevents any part of the driver’s body from contacting the ground.

k) All vehicles (including Prototypes) must be fully covered. Open top vehicles are not allowed. Vehicles that look like bicycles, tricycles or wheelchairs are not acceptable.

l) The Organisers may provide any team with telemetry equipment (see Section 5) and request them to install it in their vehicle for the purpose of competition monitoring and result calculation. In this case the main housing of the telemetry equipment will need to be installed inside the vehicle and the team must provide a hole in the body of the vehicle of no more than 32 mm for the passage of cables to one or more outside antennae which will need to be attached outside on top of the vehicle. Teams will be informed during technical inspection if such an installation is required and...
receive further installation guidelines. To ensure competitive fairness all teams in a particular energy class and vehicle category will have to install identical equipment. In addition, all teams are required to provide a regulated DC source for powering telemetry equipment [see Article 1:m].

Article 26: CHASSIS/MONOCOQUE SOLIDITY

a) Teams must ensure that the vehicle chassis or monocoque is designed wide and long enough to effectively protect the Driver’s body in the case of collisions or rollovers. The Organisers will exclude any vehicle whose construction is deemed to be dangerous.

A monocoque is a construction that supports structural load by using an object’s external skin as opposed to using a frame.

b) The vehicle chassis must be equipped with an effective roll bar that extends 5 cm around the Driver’s helmet when seated in normal driving position with the safety belts fastened. If this position impairs the Driver’s visibility it will be deemed that the roll bar is not adequate. The effectiveness of the roll bar and Driver’s visibility will be validated simultaneously, i.e. the Driver must not be in such position that he or she must raise their head or torso above the roll bar to pass the visibility test.

c) This roll bar must extend in width beyond the Driver’s shoulders when seated in normal driving position with the safety belts fastened.

It is permissible to either use a tubular or panel type roll bar. If a ‘tubular roll bar’ is used, it must be made of metal. A panel roll bar is the rigid partition separating the cockpit from the engine compartment. Such a panel roll bar must be an integral part of the vehicle chassis or integrated in a monocoque.

d) Any roll bar must be capable of withstanding a static load of 700 N (~ 70 kg) applied in a vertical, horizontal or perpendicular direction, without deforming (i.e. in any direction).

Article 27: PROPULSION AND ENERGY STORAGE SYSTEM ISOLATION

a) A permanent and rigid Bulkhead must completely separate the vehicle’s propulsion and energy storage systems from the Driver’s compartment.

A bulkhead is an upright partition separating the Driver’s compartment from the engine compartment. This means engines, fuel cells, fuel tanks, batteries (both propulsion and auxiliary), hydrogen cylinders, Super Capacitors, etc. must be placed outside the Driver’s compartment behind the bulk head. The purpose of this bulkhead is that in the event of a fuel leak or fire, it prevents liquids and/or flames and/or smoke reaching the Driver. Pay particular attention to avoid any gaps and holes between the body and the bulkhead. It is recommended to seal gaps with materials such as metal/aluminium sheeting or aluminium tape.

b) This bulkhead must be of fire retardant material and construction.
c) The bulkhead must effectively seal the Driver’s compartment from the propulsion and fuel system.

d) The bulkhead must prevent manual access to the engine/energy compartment by the Driver.

e) If holes are made in the bulkhead to pass through wires, cables, etc. it is essential that the wires/cables are protected by a grommet or similar protective material to prevent chafing or damage. All gaps/holes must also be filled.

Article 28: VISIBILITY

a) The Driver must have access to a direct arc of visibility ahead and to 90° on each side of the longitudinal axis of the vehicle. This field of vision must be achieved without aid of any optical (or electronic) devices such as mirrors, prisms, periscopes, etc. Movement of the Driver’s head within the confines of the vehicle body to achieve a complete arc of vision is allowed.

 The Driver’s helmet must be 5 cm below the roll bar at all times.

b) The vehicle must be equipped with a rear-view mirror on each side of the vehicle, each with a minimum surface area of 25 cm² (e.g. 5 cm x 5 cm). The visibility provided by these mirrors, and their proper attachment, will be subject to inspection. An electronic device must not replace a rear-view mirror.

c) In technical inspection visibility will be checked in order to assess on-track safety by using 60 cm high poles spread out every 30° in a half-circle, with a 4 m radius in front of the vehicle.

d) For UrbanConcept vehicles, wet weather visibility is also mandatory (see Article 52:).

Article 29: SAFETY BELTS

a) The Driver’s seat must be fitted with an effective safety harness having at least five mounting points to maintain the Driver securely in his/her seat. The five independent belts must be firmly attached to the vehicle’s main structure and be fitted into a single buckle, specifically designed for this purpose. The mounting points should be fitted so that the belts will self-align with the direction of the load.

b) The safety harness must prevent any upward or forward motion of the Driver’s torso. Any slack in the harness must be adjusted by using the seat belt length adjuster. The adjuster must be located as close as possible to the connection point. The crotch strap mounting point should be behind the chest line and the topmost straps should be at an angle of at least 10° below the shoulder line.

c) The safety harness must be worn and fastened at all times to prevent the Driver from having any free movement when the vehicle is in motion.

d) The fitness for purpose of the harness and its fitting will be evaluated during technical inspection. For Prototype cars this will be done by raising the vehicle with the Driver on board using the safety harness buckle as the lifting point, this must be capable of withstanding 1.5 times the Driver’s weight.

e) The UrbanConcept vehicle safety harness must be specifically manufactured for motorsport use (e.g. certified or compliant with FIA standards).
Article 30: VEHICLE ACCESS

a) It is imperative for Drivers, fully harnessed, to be able to vacate their vehicles at any time without assistance in less than 10 seconds.

b) Prototype vehicles must be equipped with a sufficiently large opening for the cockpit. The driving position must be designed so that emergency services can easily extract the Driver from his/her vehicle, if necessary.

c) For Prototype vehicles, the opening may be enclosed wholly or partly by means of hinged, detachable and/or folding doors, provided that a release mechanism is easily operable from inside and that the method of opening from the outside is clearly marked by a red arrow and does not require any tools.

d) For UrbanConcept vehicles, the opening release mechanism must be easily and intuitively operable from the inside and the outside of the vehicle. The method of opening from the outside must be clearly marked by a red arrow and must not require any tools.

e) It is forbidden to use adhesive tape to securely close the Driver’s opening from the outside.

Article 31: HORN

a) Each vehicle must be equipped with a battery powered electric horn. The horn must be mounted towards the front of the vehicle, in such a manner that is effectively audible to other vehicles and track marshals. With the vehicle in normal running condition, it must emit a sound greater than 85 dBA when measured 4 meters horizontally from the vehicle. Horns powered by a built-in independent battery are permissible.

b) The horn must have a high tone (pitch) of equal or greater than 420 Hz. The horn must produce a continuous sound when activated. Siren like horns are not permitted. Battery powered electric horns are available as bike or cycling horns with outputs greater 100 dBA. These horns are powered by AA, AAA, or 9 VDC batteries. Many of these horns are configurable to emit a range of bell, chirp, siren or other sounds and may or may not include a constant tone. When selecting your battery powered horn, Participants must ensure to choose a horn that will provide the required constant tone.

c) The horn will be tested at the end of each attempt on the track. If the horn is not operating correctly, the attempt will be invalidated.

Article 32: ON-BOARD FIRE EXTINGUISHER

a) Each vehicle must be fitted with a fire extinguisher (ABC or BC type). All Drivers must be trained in the use of said fire extinguisher. This extinguisher must have a minimum extinguishing capacity of 1 kg (2 lb for US application); equivalent size extinguishers are not permitted. The extinguisher must be full (i.e. never used) and have a manufacturing or expiry date. If the extinguisher does not have an expiry date the unit will be acceptable (i.e. valid) if it was manufactured within the past three years. Any extinguisher beyond the expiry period that has been re-inspected and tagged with an official dated recertification will also be permitted.

b) Plumbed-in extinguishers may be located in the engine compartment and must discharge into the engine compartment. Triggering systems must be located within the cockpit and be operable by the Driver in his/her normal driving position.
c) Hand held extinguishers must be located within the cockpit and be accessible to the Driver once they have vacated the vehicle. These should be securely mounted to prevent movement while driving/braking. In the event of a fire, Drivers should first exit the vehicle and then if possible, remove the extinguisher and attempt to extinguish the fire if safe to do so.

d) The on-board fire extinguisher does not replace the need for an adequate fire extinguisher for the team’s garage area.

Article 33: DRIVER POSITION
For safety reasons, the head-first driving position is prohibited. The Driver position should be such that the helmet is 5 cm below the roll bar AND that the visibility for the Driver is unimpaired at the same time.

Article 34: CLUTCH AND TRANSMISSION
a) All vehicle propulsion must be achieved only through the friction between the wheels and the road.

b) All vehicles with internal combustion engines must be equipped with a clutch system.

c) For centrifugal/automatic clutches the starter motor speed must always be below the engagement speed of the clutch.

d) For UrbanConcept ICE vehicles only: The vehicle must have ‘idling capabilities’, i.e. the vehicle must remain stationary with the engine running.

e) For manual clutches the starter motor must not be operable with the clutch engaged. An interlock is required to facilitate this functionality.

f) Please refer to Article 64: regarding starter motor requirements.

g) The installation of effective transmission chain or belt guard(s) is mandatory.

This is required to protect the Driver or technician when working on the car in the event of the chain or belt breaking. It must be made of metal or composite material rigid enough to withstand a break.

Article 35: EXHAUST SYSTEM
a) The exhaust gases must be evacuated outside the vehicle body.

b) Exhaust pipes must not extend beyond the rear or the side of the vehicle body.

c) All vehicles are expected to comply with reasonable environmental standards, e.g. amount of smoke and odour emitted.

Article 36: SOUND LEVEL
The sound level of the vehicle must not exceed 90 dBA when measured 4 metres away from the vehicle.

Maximum sound levels will be measured at the discretion of the Organizers and any team exceeding the permissible level will be notified with a request for correction.
Article 37: EMERGENCY SHUT-DOWN

a) The purpose of the emergency shutdown system is to disable the propulsion system of the vehicle. Different types of propulsion systems require different measures to accomplish this:

b) Spark ignition engines (gasoline, ethanol, CNG) will require the emergency shutdown mechanism to shut down the ignition. It is not necessary to isolate the accessory battery. In addition, for CNG powered vehicles, the emergency shutdown system must also cut off the flow of gas.

c) Compression ignition engines (diesel, GTL) will require the emergency shutdown mechanism to shut off the fuel or air flow. It is not necessary to isolate the accessory battery.

d) For Battery Electric vehicles the emergency shutdown mechanism must provide a physical isolation of the propulsion battery from the vehicle electrical system. If relays are used, the relays must be a normally open contact type. The use of a power controller or other logical systems to drive an isolation device is not permitted.

e) For Hydrogen vehicles see Article 1:e).

f) There must be both an internal and an external shutdown mechanism.

i. The internal emergency shutdown mechanism is for Driver operation and can be designed in any effective way.

ii. The external emergency shutdown mechanism must be at the rear of the vehicle and permanently installed on a non-detachable part of the bodywork.

iii. A standard “Battery Master Switch” sticker (Blue triangle with red electrical arc) provided by the Organiser with sticker kit must be positioned on the vehicle body to clearly indicate the exterior position of the emergency shutdown actuator.

g) The external emergency shutdown mechanism must be achieved by means of a latching red push button, which can only be re-activated by rotating it. Push/pull levers are no longer accepted.

h) In addition to the above devices, all vehicles must be equipped with a “dead man’s safety device” or sometimes referred to as “operator presence control.” The purpose for this device is to ensure that in case the driver becomes incapacitated the vehicle’s propulsion power is automatically disengaged (i.e. returns to an idle condition). This device may consist of a spring loaded hand operated accelerator or foot pedal lever. An electric dead man switch is permissible as long as the switch is located on the steering wheel. If an electric dead-man’s switch is used, the Driver must directly (for example by thumb or index finger) engage the switch at all times while driving.

i. This device is a separate switch from the required “emergency shutdown” mechanisms identified in Article 1:a).

ii. If an ICE Prototype vehicle is designed with a WOT (wide open throttle) operation the dead-man’s switch must switch off the ignition system.
Article 38: ADDITIONAL INSPECTIONS

a) After passing technical inspection, the replacement and/or alteration of the engine, any vehicle wiring, or any other vehicle part must be re-approved by the Organisers.

b) After any significant incident to the vehicle, it must be re-inspected.

c) At any time, the Organisers may perform unannounced inspections on the vehicles.

3B - PROTOTYPE GROUP

Article 39: DIMENSIONS

a) The vehicle maximum height must be less than 100 cm.

b) The vehicle track width must be at least 50 cm, measured between the midpoints where the tyres of the outermost wheels touch the ground.

c) The ratio of height divided by track width must be less than 1.25.

d) The vehicle wheelbase must be at least 100 cm.

e) The maximum total vehicle width must not exceed 130 cm.

f) The maximum total length must not exceed 350 cm.

g) The maximum vehicle weight, without the Driver is 140 kg.

h) None of the body dimensions above must be achieved by design singularities such as ‘stuck-on’ appendages or cutouts.

Article 40: NOT USED

Article 41: TYRES, WHEELS, AXLES AND WHEEL HUBS

a) All types of tyres and wheels are allowed.

b) Any type of wheel rim may be used. Rims must be compatible with the dimensions of the selected tyres in order to satisfy safety standards.

Teams must take into account the fact that bicycle wheels are not generally designed to support substantial lateral cornering forces, such as may be found in Shell Eco-marathon vehicles at certain speeds.

The wheel axles must be designed for cantilever loads (like in wheel chairs) rather than for load distributed equally on both sides (like in bicycles).

c) Wheels located inside the vehicle body must be isolated from the Driver by a bulkhead.

d) Any handling or manipulation of wheels by the Driver is forbidden from the moment the vehicle is at the starting line until it crosses the finish line.

e) All installations must be carried out in a way that there is no likelihood of the wheels coming into contact with other parts of the vehicle (i.e. cables, wires, hoses, and engine compartment components like batteries, etc.). These must be safely mounted/secured so that they cannot interfere with the turning wheel during driving and cause accidents.
Article 42: TURNING RADIUS AND STEERING

a) Only front wheel steering is permitted. If the Organisers are not satisfied with the effectiveness and/or control of a vehicle’s steering system, this vehicle will be removed from the competition.

b) The turning radius must be 8 m or less. The turning radius is the distance between the centre of the circle and the external wheel of the vehicle. The external wheel of the vehicle must be able to follow a 90° arc of 8 m radius in both directions. The steering system must be designed in such a way as to prevent any contact between tyre and body or chassis.

c) Electrically operated indirect steering systems are permitted providing they are operated by a steering wheel or similar (rotary potentiometer), joystick operation is not permitted. If electronic steering systems are used, in the event of release of the steering wheel by the Driver or electrical failure, the vehicle should revert to the straight ahead position.

d) The Organisers reserve the right to set up a vehicle handling course in order to verify the following when the vehicle is in motion: driver skills, turning radius and steering precision. For example, the Organisers will verify that steering is precise, with no play.

Article 43: BRAKING

a) Vehicles must be equipped with two independently activated brakes or braking systems; each system comprising of a single command control (lever(s) working together or foot pedal), command transmission (cables or hoses) and activators (callipers or shoes). Brakes that act on the tyres are not permitted.

b) One system has to act on all front wheel(s), the other on all rear wheel(s). When braking on two steering wheels at the front, two activators (callipers or shoes) have to be used (one on each wheel), commanded by only one command control. In addition, the right and left brakes must be properly balanced.

c) The rear system must work on each wheel, unless they are connected by a common shaft in which case they can have a single system.

d) It must be possible to activate the two systems at the same time without taking either hand off the steering system. Foot control is recommended.

e) The effectiveness of the braking systems will be tested during vehicle inspection. The vehicle will be placed on an incline with a 20 percent slope with the Driver inside. The brakes will be activated each in turn. Each system alone must keep the vehicle immobile.

f) During practice or competition runs the brakes must be protected against any adjustments by the Driver. The effectiveness of the protection to ensure compliance will be evaluated during technical inspection and rechecked before entering the track. In addition, vehicles will be checked at the start and/or finish area. Any protection system that has been compromised will invalidate that run and a penalty may be issued by the Organisers.

g) The use of a hydraulically controlled braking system is highly recommended.

Copyright © 2017 Shell
3C – URBANCONCEPT GROUP

Article 44: DEFINITION

Under the name “UrbanConcept”, Shell offers an opportunity to design and build energy efficient vehicles that are closer in appearance to today’s production type passenger cars. UrbanConcept vehicles must comply with the specific rules of Shell Eco-marathon for this group. One particular feature of this group is that vehicles competing in this group will require “stop & go” driving.

During all practice and competition driving at Shell Eco-marathon events only one person (the Driver) is allowed inside UrbanConcept vehicles, regardless of the number of seats installed.

Article 45: DIMENSIONS

a) The total vehicle height must be between 100 cm and 130 cm.

b) The total vehicle width, excluding rear view mirrors, must be between 120 cm and 130 cm.

c) The total vehicle length must be between 220 cm and 350 cm.

d) None of the vehicle dimensions, height, width and length must be achieved by body extensions such as ‘stuck-on’ appendages or cut-outs. The track width must be at least 100 cm for the front axle and 80 cm for the rear axle, measured between the midpoints where the tyres touch the ground.

e) The wheelbase must be at least 120 cm.

f) The Driver’s compartment must have a minimum height of 88 cm and a minimum width of 70 cm at the Driver’s shoulders.

g) The ground clearance must be at least 10 cm with the Driver (and necessary ballast) in the vehicle.

h) The maximum vehicle weight (excluding the Driver) is 225 kg.

Article 46: VEHICLE BODY

a) Teams are requested to submit technical drawings, photographs or animations of their entire vehicle design to the Organisers for approval at their earliest opportunity. This is strongly recommended to avoid upsets by failing the technical inspection at the event on grounds of design non-compliance.

b) The body must cover all mechanical parts whether the vehicle is viewed from the front, the rear, the sides or from above. However, the wheels and suspension must be fully covered by the body when seen from above and up to the axle centre line when seen from front or rear. The covering for the wheels and suspension must be a rigid integral part of the vehicle body.

c) It is prohibited to use any commercially available vehicle body parts.

d) Access to the vehicle by the Driver must be as easy and practical as typically found in common production type passenger cars. All new UrbanConcept vehicles for 2017 and onwards must have a side-door design. The door opening must have a minimum dimension of 500 x 800 mm.
This means a rectangular template of this dimension must be able to pass through the door opening in the vertical plane.

e) Any access opening mechanisms (e.g. doors) must be firmly attached to the vehicle body (e.g. by means of hinges, sliding rails, etc.). Adhesive tape, Velcro, etc. are not permitted for this purpose.

f) The vehicle must have a fixed roof covering the Driver’s compartment.

g) A windscreen with effective wiper(s) is mandatory. Please refer to Article 1:b).

h) Luggage space must be available for a rectangular solid box with dimensions of 500 x 400 x 200 mm (L x H x W). This space must be easily accessible from the outside and must include a floor and sidewalls to hold the luggage in place when the vehicle is moving. The luggage must be supplied by the Participant and must be placed in this space during inspection and competition.

i) Vehicle bodies must not include any external appendages that might be dangerous to other Team members; e.g. sharp points must have a radius of 5 cm or greater, alternatively they should be made of foam or similar deformable material.

j) A towing hook or ring is mandatory at the front of the vehicle. It can be rigid or flexible (cable or strap). If it is rigid, it must be placed fully under the body for safety reasons. Alternatively, it may be retractable or removable as in a regular car but should be easily accessible. It must be used to tow the vehicle in case of breakdown on the track. It must have a traction resistance equivalent to the weight of the vehicle and have an opening width of at least 3 cm.

Article 47: TURNING RADIUS AND STEERING

a) Vehicle steering must be achieved by one system operated with both hands using a turning motion. It must be precise, with no play or delay. **Steering must be operated predominately through the front wheels.**

b) Steering must be achieved using a steering wheel or sections of a wheel with a diameter of not less than 25cm.

c) Steering bars, tillers, joysticks, indirect or electric systems are not permitted.

d) The turning radius must be 6 m or less. The turning radius is the distance between the centre of the circle and the external wheel of the vehicle. The external wheel of the vehicle must be able to follow a 90° arc of 6 m radius in both directions. **The steering system must be designed in such a way as to prevent any contact between tyre and body or chassis.**

e) The Organisers reserve the right to set up a vehicle handling course in order to verify the following when the vehicle is in motion: driver skills, turning radius and steering precision. For example, the Organisers will verify that steering is precise, with no play.

Article 48: WHEELS

a) The rims must be between 15 to 17 inches in diameter.
b) The wheels located inside the vehicle body must be made inaccessible to the Driver by a bulkhead. Any handling or manipulation of the wheels is forbidden from the moment the vehicle arrives at the starting line until it crosses the finish line.

Article 49: TYRES

The choice of tyres is free as long as they are fitted on the type and size of rims recommended by their manufacturers and have a minimum tread of 1.6 mm. The tyre/rim assembly must have a minimum width of 80 mm, measured from tire sidewall to tire sidewall. The width is measured with the tyre fitted on its rim at its rated pressure.

Caution:
- The manufacturer’s size indications should not be taken as measure, as the width of the rim directly impacts the width of the rim/tyre assembly.
- It is strongly recommended to use flat profile tyres designed for four wheels vehicles or light trailers, not round/triangular profile tyres used for mopeds or motorbikes.
- It may be necessary to use a 90 mm tire to achieve the above-mentioned measure.

Article 50: LIGHTING

The vehicle must have a functional external lighting system, including:

a) Two front headlights.

b) Two front turn indicators.

c) Two rear turn indicators.

d) Two red brake lights in the rear.

e) Two red rear lights (may be combined with the brake lights).

f) The centre of each headlight unit must be located at an equal distance and at least 30 cm from the centre-line of the vehicle.

g) The mandatory red indicator light for the self-starter operation must be separate from any of the above (see Article 1:c).

Article 51: BRAKING

a) The vehicle must be equipped with a four-disc hydraulic brake system, with a single brake pedal, which has a minimum surface area of 25 cm². The brake pedal must operate the master cylinders either directly or through a rigid mechanical link. Wires/cables are not allowed. Disc brakes with a minimum thickness of 3 mm are mandatory.

b) The brakes must operate independently on the front and rear axles or in an X pattern (i.e. right front wheel with left rear wheel, and left front wheel with right rear wheel).

c) A single master cylinder may be used, provided that it has a dual circuit (two pistons and dual tank).

d) The effectiveness of the brake system will be tested during vehicle inspection. The vehicle must remain immobile with the Driver inside when it is placed on a 20 percent incline with the main
brake in place. Moreover, a dynamic inspection may be performed on the vehicle-handling course.

e) A parking brake function is required in order to keep the car stationary during technical inspections and fuel measurements. It must provide a brake force of at least 50 N.

f) Wet weather capability is mandatory (see Article 52:).

Article 52: WET WEATHER RUNNING
a) During weather conditions of light rain/drizzle, the UrbanConcept vehicles (only) may be required to drive on the track during competition with approval from the Race Director. Therefore, all UrbanConcept vehicles must be adequate for running under such conditions.

b) The vehicle must be equipped with an effective electric windscreen wiper arm assembly typically found in a production car.

c) The operation of the wiper assembly must be activated by an independent switch easily accessible to the driver.

d) The wiper operation must provide the Driver with a clear view.

e) The vehicle must be adequately ventilated to prevent the Driver’s compartment from fogging.

f) The vehicle’s electrical system must be suitable for wet weather conditions (e.g. will not malfunction during wet conditions).

g) Tyres must have a minimum tread of 1.6 mm (see Article 49:).

h) The vehicle’s brake effectiveness may be re-inspected before and/or after any run.

i) The effectiveness of the vehicle to run in wet conditions will be evaluated during the initial inspection phase.
4. ENERGY SOURCES

4A – GENERAL

Article 53: ENERGY TYPES
Vehicles may only use any one of the following energies:

a) Internal Combustion*:
 i. Shell FuelSave Unleaded 95 (Europe and Asia)/Shell Nitrogen Enriched (US) Gasoline.**
 ii. Shell FuelSave Diesel (Europe)/Shell Diesel (Asia and US).
 iii. Ethanol E100 (100% Ethanol)
 iv. Shell Gas to Liquid (100% GtL)
 v. CNG***

* All Internal Combustion fuels will be ranked jointly in the one prize category called 'Internal combustion' on an energy content corrected basis. (See Article 75:)

** The gasoline and diesel provided by the Organisers during the competition are the Shell fuels prevalent in the local market where the event takes place. For testing and tuning purposes in the team’s home countries where Shell fuels may not be available it is recommended to use the locally available Unleaded 95 (87 US) or Diesel instead.

*** The gas provided by the Organiser for the CNG category will be pure Methane.

b) Electric Mobility****:
 i. Hydrogen.
 ii. Battery Electric.

**** Results for Hydrogen and Battery Electric teams will be ranked in two (2) separate prize categories (See Article 75:)

Article 54: RESULTS CALCULATIONS

a) All live results displayed on on-site monitors as well as the internet during the competition are provisional until verified and published by the Organisers after the completion of the event, usually within 3 days after the event.

b) Results for the Internal Combustion Category will be expressed in kilometres per litre (km/l) or miles per gallon (mpg) depending on region (i.e. theoretical distance covered using energy of gasoline equivalent) corrected to a temperature of 15 °C on a tank-to-wheel basis.

c) Regardless of the fuel used, for the internal combustion category, the ranking will be determined from the equivalent consumption of gasoline. This calculation will be performed using the net calorific value (NCV), which represents the quantity of energy released per unit mass or volume of fuel during complete combustion yielding steam and carbon dioxide, and the energy consumed from the battery as measured by the joulemeter, and corrected to allow for the efficiency of the electricity production process.
For the 2017 season the ICE battery energy measured by the joulemeter will be collected and made available to the teams. The joulemeter measured energy WILL NOT be used for competition results calculation.

d) Typical NCV values (mass basis) for different fuels are given in the table below. The NCV values (vol.) at 15 °C are calculated on the day of competition by multiplying the actual mass-based NCV by the fuel density at 15 °C.

<table>
<thead>
<tr>
<th>ENERGY TYPE</th>
<th>NCV BY MASS (kJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell FuelSave Unleaded 95 (Europe and Asia), Shell Nitrogen Enriched (US) Gasoline</td>
<td>42,900</td>
</tr>
<tr>
<td>Shell FuelSave Diesel (Europe), Shell Diesel (Asia and US)</td>
<td>42,600</td>
</tr>
<tr>
<td>Ethanol E100</td>
<td>26,900</td>
</tr>
<tr>
<td>Gas to Liquid</td>
<td>44,000</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>119,930</td>
</tr>
<tr>
<td>CNG</td>
<td>50,016</td>
</tr>
</tbody>
</table>

Example: A distance of 1,000 km is covered with one litre of Shell FuelSave Diesel and the total electrical energy consumed is 200 kJ. Given that the NCV of diesel and gasoline are 0.83716 and 0.7646 kg/l @ 15°C respectively, and NCVs as per the table above, then the corresponding gasoline equivalent volumes consumed are:

Diesel: \(1 \times 0.83716 \times 42600 / (42900 \times 0.7646) = 1.11 \) litres gasoline

Electricity: \(200 / 0.25 / 0.75 / (42900 \times 0.7646) = 0.03 \) litres gasoline

Nett = 1.11 + 0.03 = 1.14 litres gasoline

Where

\(0.25 = \) efficiency of the conversion process

\(0.75 = \) the efficiency factor of engine generated electricity

The final fuel consumption result is thus:

Fuel consumption (km/L) = 1000 / 1.14 = 876.6 km/litre gasoline equivalent at a reference temperature of 15°C

e) Results for Battery Electric vehicles will be expressed in kilometres per kilowatt hour (km/kWh), or miles/kWh depending on region, and will be determined by using a joulemeter supplied by the Organisers.

f) Fuel Cell vehicles will use a flow meter to measure the \(\text{H}_2 \) consumed, and the energy consumed from the battery as measured by the joulemeter. The results will be calculated using the NCV of \(\text{H}_2 \) listed above and expressed in km/m\(^3\) hydrogen.

For the 2017 season, the fuel cell battery energy measured by the joulemeter will be collected and made available to the teams. The joulemeter measured energy WILL NOT be used for competition results calculation

g) The results for hybrid vehicles will be expressed based on the primary energy used.
Article 55: FUELS SUPPLY AND HANDLING

a) Only the fuels listed in Article 53: as provided to the Participants by the Organisers during the event, are authorised for use during practice and competition.

b) Supplies adequate for practice and competition will be made available to all Teams at the event.

c) No additives may be added to the fuel. Only the energy derived from the combustion of the fuel in the presence of air alone within the engine system may be used for forward propulsion. No other material that could serve as engine fuel may be used at any time during the event.

d) Participants handling fuel must wear safety glasses and chemically resistant gloves.

e) No additives, catalysts, water injection, or fuel treatment devices are allowed.

Article 56: NOT USED

Article 57: VEHICLE ELECTRICAL SYSTEMS

a) For safety reasons, the maximum voltage on board of any vehicle at any point must not exceed 48 Volts nominal and 60 Volts max (this includes on-board batteries, external batteries, Super Capacitors, fuel cell stack, etc.).

Battery definition: A ‘battery’ is defined as a source of electrical energy, which has exactly two connectors and comes as a single unit. This single unit may contain more than one sub-unit.

b) For all vehicles only one on-board battery is allowed. For ICE and hydrogen fuel cell vehicles this is the accessory battery (see Article 1:i). For battery electric vehicles this is known as the propulsion battery.

c) If Lithium-based batteries are used,

i. Battery Management Systems (BMS) tailored to this chemistry must be used to control and protect the battery against risk of fire.

ii. The BMS must provide cell balancing and overvoltage protection during off-track charging.

iii. If a lithium battery contains more than one sub-unit or cell, the basic sub-unit must first be connected in series, before being connected in parallel. Otherwise it would be impossible for the BMS to monitor the current of each individual cell.

iv. For E-mobility vehicles, the additional requirement of cell level over-discharge, over-current and over-temperature must be provided as part of the on-vehicle system. The BMS must AUTOMATICALLY isolate the battery, without operator intervention, if a limit or out of range condition is reached on any of the above parameters.

v. For Lithium-based accessory batteries (non-E-mobility vehicles), the BMS cell balancing and overvoltage protection may be contained as part of the off-board charger.

vi. The maximum capacity of any Lithium-based battery used in any propulsion energy class vehicle is 1,000 Wh. For batteries not rated in Wh, the Wh rating is calculated by multiplying the amp-hour rating of the battery by its nominal voltage.

vii. Protection for Lithium-based battery charging, whether in or out of the vehicle must be provided, see Article 24(i).
d) Any Lithium based battery must be equipped with a metal containment under the battery OR the battery must be enclosed in a battery charging bag suitable to prevent the battery, in the event of a fire or battery incident, from burning through the battery mounting or the vehicle body and dropping to the ground.

e) All batteries and Super Capacitors must be short circuit protected. Protection may be in the form of a fuse, fusible link, or a current interrupting device (circuit breaker). Automatic reclosing current interrupting devices are not allowed. Short circuit protection devices must be located on the positive conductor and as close as possible (maximum 30 cm from the positive terminal) to the battery or Super Capacitor itself. The rating of the short circuit protection device must be such that the battery or Super Capacitor will be able to supply enough short circuit current at all times to open the device. For vehicles with a starter motor, the starter motor cable is NOT required to be protected.

f) For safety reasons, both the positive and negative circuits of the propulsion battery or Super Capacitors must be electrically isolated from the vehicle frame.

g) All vehicle electrical circuits must be protected against electrical overload. Overload protection may be in the form of fixed current limits within electric controllers or by the insertion of individual circuit fuses. For Internal Combustion vehicles, overload protection is required for the motor controller, ignition system, and other accessory load circuits.

h) The accessory battery (see Article 1:i) must maintain a negative ground.

i) Accessory battery

i. The accessory battery provides for all allowed electrical needs such as safety devices (windscreen wipers, lights, hydrogen sensors, hydrogen relays and hydrogen shutdown valve), ignition, fuel injection control, starter motor, and ventilation/cooling fan for the Driver. For Internal Combustion vehicles only the accessory battery may also be used for engine management systems.

ii. The capacity of the accessory battery must be sufficient to power all the accessory loads and the installed vehicle telemetry on-board computer (see Article 70:1) with a sufficient safety margin. An accessory battery load analysis will be reviewed during technical inspection to validate sufficient battery capacity.

j) All teams will be required to install at least one joulemeter, to measure the quantity of total energy provided by the battery.

k) Both propulsion and accessory batteries must be installed outside of the Driver’s compartment behind the bulkhead.

l) The following devices may be powered by batteries other than the propulsion or accessory battery provided they use built-in or small capacity batteries: radio communication system, GPS system, data loggers excluding engine management units, Driver ventilators. The vehicle horn is required to be powered by a built-in battery.
m) All teams are required to provide an on-board DC-to-DC power supply for the telemetry on-board computer sensor systems (see Article 70:). The input to the DC-to-DC converter shall be from the vehicle electrical system. The required DC-to-DC output characteristics are: isolated 12 V DC, < +5% output voltage regulation, and minimum 1 amp continuous current rating. The on-board computer power interface shall be through screw terminals of a separate terminal block suitable for an 18 AWG wire and be located in the engine compartment.

n) All electrical/electronic enclosures built and populated by the Teams must be made of transparent material or at least have a transparent cover to allow the technical inspectors to view the contents.

c) Charging of batteries must be done with the battery charger that comes with a purchased battery or a purpose built charger specifically suited to the given type of battery and its rated capacity. For self-built batteries, Teams must demonstrate that the charger function is suitable and is integrated with the BMS system.

p) Electrical wiring should be in good condition, neat, clearly labelled, secured and not close to any moving parts [e.g. wheels, chains]. “Spaghetti” wiring is prohibited, and the Organisers may ask the Team to re-wire the electrical system (it should be clear where each wire is going for easy inspection).

‘Spaghetti’ wiring describes any wiring arrangement that looks like a plate of spaghetti, or a rat’s nest.

q) Electrical connections should be secure and not likely to come loose.

Article 58: TECHNICAL DOCUMENTATION

a) Participants need to provide technical documentation in 2 stages:

i. Prior to the event during the online submittal process (see Article 1:b). This documentation serves only to verify that the Teams have an understanding of the Rules. Online approval in no way constitutes a pre-approval for the Technical Inspection phase.

ii. At the event (see Article 1:c) This should be a precise technical description of the vehicle. During technical inspection, the documentation will be compared against the vehicle. Deviations between the technical documentation and the vehicle will be required to be reconciled prior to passing technical inspection. Teams should print their technical documentation before the event.

b) Technical Documentation – prior to event.

i. Competitors must provide, through the online submittal process, documentation on the vehicle energy supply and propulsion system. It is not necessary to submit detailed component specifications or electrical schematics as part of the online submittal process.

ii. Energy supply block diagram

The online submitted energy supply block diagram and associated text description must contain information describing the energy flow and component function for the vehicle energy systems. Specific items to be included in the block diagram for each energy category are listed below:
- **ICE (liquid fuels):** engine, fuel tank, fuel line, injector, pressure relief valves, pressure regulators, pressure gauge, compressed air bottle, vehicle cut-off mechanism.
- **ICE (CNG):** Engine, pressure regulator, cylinder, solenoid valve, fuel line, vehicle cut-off mechanism.
- **H2:** Fuel cell, cylinder, solenoid valve, pressure regulator, flow meter, motor controller, motor, super capacitor, vehicle cut-off mechanism.
- **BE:** Motor, battery/BMS, fuse, wiring, e-stop switches, motor controller, vehicle cut-off mechanism.

iii. Propulsion system block diagram

The online submitted propulsion system block diagram and associated text description must contain information describing the propulsion mechanism for each energy category below:

- **ICE/CNG:** Engine/Motor to road (engine, transmission, clutch, wheel, motor, super capacitor, motor controller).
- **H2:** Motor to road.
- **BE:** Motor to road.

c) Technical Documentation – at event (to be reviewed during Technical Inspection)

i. Participants must have printed documentation describing selective technical aspects of the vehicle available for inspection with the vehicle. The printed documentation must be bound and divided into the following sections. The specific required sections for each energy category are defined below.

ICE (liquid and CNG) energy category

- Energy Supply Diagram
- Propulsion System Diagram
- Electrical Schematic
- Hybrid System +
- Battery/BMS ++

Battery Electric energy category

- Energy Supply Diagram (Electrical Schematic)
- Propulsion System Diagram
- Battery/BMS
- Motor/Motor Controller

Hydrogen category

- Energy Supply Diagram
- Propulsion System Diagram
- Fuel Cell
- Electrical Schematic
Motor/Motor Controller
Super Capacitor +
Battery/BMS ++
 + If included in the vehicle
 ++ If a Lithium-based accessory battery is included in the vehicle

ii. The minimal contents of each of the above required sections are defined below.

- Energy Supply Diagram: include updated diagrams and associated descriptive text as defined in Article 58 (b) above.
- Electrical Schematic: provide a vehicle level schematic showing all vehicle wiring and associated components and connections. The schematic should include component values such as voltage levels and fuse ratings. Schematics of components such as the engine management system or fuel cell controller are not required in this section.
- Hybrid System: include manufacturers’ component specifications at the lowest level of purchased components. Include diagrams describing the power flow into and out of the hybrid system. Include super capacitor documentation (see the Super Capacitor section below).
- Battery/BMS: (For Lithium-based batteries only) Provide battery/BMS manufacturer component specifications at the lowest level of purchased components. At minimum, the battery documentation should include cell chemistry, cell electrical characteristics, cell series or parallel configurations, battery voltage, and current ratings. The BMS data MUST include:
 1. Cell over-voltage and under-voltage protection limits.
 2. Battery over-current limit (not required for accessory battery).
 3. Operation of cell balancing (how and when).
 4. Battery over-temperature limit (not required for accessory battery).
 5. How the BMS will protect the battery when an over-voltage, under-voltage, over-current or over-temperature condition is reached, i.e. how will the BMS protect or isolate the battery, in the case of Battery Electric Vehicles, when these limits are reached?
- Motor/Motor Controller: Provide motor/motor controller manufacturers component specifications at the lowest level of purchased components. For Battery Electric Vehicles, include design documentation on the purpose built motor controller. The documentation may contain control flow diagrams, motor controller and sub-component schematics and PC board layouts if PC boards were used. Also include software documentation if software was written as part of the motor controller development.
- Fuel Cell: Provide fuel cell manufacturers component specifications at the lowest level of purchased components. This should also include the surface area of the fuel cells, rated power and voltage.
- Super Capacitors: Provide super capacitor manufacturers component specifications at the lowest level of purchased components. At a minimum, include super cap system rated voltage and max current.
4B – INTERNAL COMBUSTION ENGINES (LIQUID FUELS)

Article 59: PROPULSION
The type and design of the internal combustion engines are not restricted, however they must run only on the fuel provided by the Organisers and must not consume any engine oil (2 stroke engines are not allowed).

Article 60: OTHER ON-BOARD ENERGY SOURCES
a) For all energy types stored pneumatic energy not replaced during the competition by the engine may only be used for the fuel injection system. Fuel pumps are permitted for all fuels provided they are mechanically driven by the engine only. Electric fuel pumps will continue to be prohibited.

b) It is permitted to pressurise the liquid fuel tanks, in order to feed the engine, only under the following conditions:
 i. Pressurisation is done by means of a translucent compressed air bottle fitted with a safety valve set to 5 bars maximum – or the lower operation pressure of the vehicle system.
 ii. The system must include a standard valve as used for car tires in order to enable verification/control of the pressure setting for the safety valve.
 iii. The said pressurisation is done in the starting area by means of an air pump.
 iv. The Driver must not modify the pressure during the competition.

c) Auxiliary energy sources (chemical, latent energy from phase changes, etc.) are not permitted.

d) If the engine temperature is regulated, the said regulation should be limited to the use of pure, unpressurised water as coolant. The external regulation temperature of the engine (for engines thus equipped) is limited to 100 °C.

Article 61: FUEL TANKS (WITH THE EXCEPTION OF HYDROGEN AND CNG)
a) The vehicle must be equipped with only one of the following approved fuel tanks supplied by the Organisers:
 Tank capacities: Prototype: 30, 100 or 250 cc
 UrbanConcept: 30, 100, 250 or 350 cc

b) Only tanks bearing a clearly visible stamp proving its “APAVE”* certification compliance can be used for pressurised systems.

 *APAVE tests fuel tanks and certifies their ability to withstand a pressure of five bar.

c) The fuel tank has to be mounted in an accessible and zero degree vertical position which allows in-situ filling with a burette of approx. 1 metre height.

d) The fuel tank must be mounted in a way that its top is at least 5 cm below the roll bar and far from any moving parts, batteries, heat and ignition sources.
e) The fuel tank cap, whether it is leak proof or not (drilled), must be in place at all times during the competition. For gravity fed systems a small (<3 mm) hole must be drilled in the centre of the cap to allow air to enter the tank, hence allow fuel out!

f) Fuel return lines must be fed into the fuel feed line below the fuel tank. However, the return line can only be fitted to the fuel cap if the engine was originally equipped with a manual priming pump and this return line and the pump have not been modified.

g) Competitors must equip their vehicle with clear fuel lines which are not prone to expansion when pressurised (max. internal diameter 8 mm).

h) For pressurised fuel systems the hoses connecting the pressure bottle with the fuel tank cap must be flexible (do not need to be Rilsan/Nylon type) to allow easy connection and in order to prevent side loading to the tank necks.

Article 62: FUEL SYSTEM

a) Participants must provide a description and a precise technical drawing of the fuel supply system from tank to engine.

b) This system must be designed in such a way that it can be completely drained and refilled before the competition.

c) The fuel line between the tank and the engine must not include any additional elements (no additional filters). A second valve directly at the bottom of the fuel tank is tolerated.

d) For diesel engines, a cut-off solenoid valve is required.

e) Engines with carburettors are not allowed. Fuel injection is mandatory.

f) The air intake manifolds must not contain any fuel (or be able to accumulate any fuel) or blow-by gas when the vehicle is on the starting line prior to departure. Air filters are not allowed in the intake system. Blow-by gas must not be recycled during the competition but has to be collected in a specific canister for environmental protection.

 Blow-by gas: gas inside the engine (in particular, oil vapours, unburnt gas or gas in the combustion chamber that has not been evacuated in the exhaust). This gas is usually recovered at the intake manifold. This is known as blow-by gas recirculation.

 g) The fuel system must be easily accessible for inspection and measurements.

 h) It must be possible to set the fuel supply system to atmospheric pressure for measurement of the fuel level. The pressurisation system must be equipped with a pressure gauge and normal running pressure must be clearly marked on the gauge.

 i) The standard fuel consumption measurement method for liquid fuels is by volumetric replacement of the fuel consumed and temperature corrected fuel.

 j) The fuel consumption of gasoline and ethanol powered vehicles which have achieved more than 1,500 km/l (3,528 mpg) in the past will be measured gravimetrically. At the start a Fuel Marshall will fill the fuel system and then the entire fuel system (including tank, injector, pipes, injector) will be weighed on a precision balance. All these components must be compact and easily detachable for weighing purposes. After completion of a successful run, the entire fuel system will be de-installed and weighed again on the same balance. This handling of the fuel
system, including mounting to and dismounting from the vehicle and transporting it to the weighing room must be performed by a competent team member who has a valid garage access pass. The entire process of handling the fuel system will be supervised by a Fuel Marshall who will also perform the weighing which needs to be witnessed by a Team Member.

k) Fuel is a volatile product. Therefore, it is not allowed to artificially increase the fuel system temperature, which would lead to the formation of vapour locks. Conversely, cooling or refrigeration of the fuel below ambient temperature is also prohibited.

Article 63: VEHICLES USING HYBRID TECHNOLOGY

a) A Super Capacitor is the only allowed energy storage device for hybrid vehicles. Mechanical or hydraulic energy storage is not permitted. The use of any battery in the hybrid propulsion system is forbidden.

b) This capacitor must be the only source of stored energy for the electric motor driving the vehicle.

c) Two connectors must be installed safely outside the vehicle to allow the voltage measurement on the starting line. These must be labelled “Super Capacitor Voltage”.

d) The state of charge of the Super Capacitor will be checked before and after each run by measuring its voltage. The voltage registered after the run must be at least equal to the voltage registered before the run. In the event of the contrary, the Super Capacitor must be re-charged by running the engine until its voltage is equal to the voltage registered before the run. The time required to recharge the Super Capacitor by running the engine after the competition is added to the recorded time of the relevant run.

e) The entire electric circuitry must be correctly fused to prevent overloading any of its parts. This fuse needs to be clearly identified in the technical drawings and easily visible and accessible for Technical Inspection (see Article 1:g).

Article 64: STARTER

a) An electric starter may be used during the competition, provided that it can operate only when the ignition and fuel systems are activated.

b) It must be clearly established that the starter is never capable of providing any forward propulsion to the vehicle.

c) Starter light: A clearly visible red indicator light, equivalent in its luminescence to a 21 W light bulb, must be installed on the rear of the vehicle and must be clearly visible from both sides of the track in order to signal any operation of the starter motor.

d) In the event that Track Marshalls report the repeated or intensive use of the electric starter by a Team, the Organisers reserve the right to order an immediate inspection of the vehicle. If any non-compliance is observed, the Team will be penalised accordingly.

e) At the start, the starter and hence the starter light must be extinguished by the time the rear wheel of the vehicle crosses the start line. Failing to comply will invalidate the run and count towards the maximum number of attempts.
4C – ELECTRIC PROPULSION

Article 65: FUEL CELL POWERED VEHICLES

a) Fuel system
 i. Participants must provide a description and a precise technical drawing of the fuel supply system.
 ii. The fuel system must be easily accessible for inspection and measurements.
 iii. The fuel cell must run by itself. The electricity needed for temperature regulation, fan, compressor, electronic management system for the fuel cell and the electric motor must be supplied by the fuel cell and not by the accessory battery.
 iv. The hydrogen system must be designed as follows:
 \[H_2 \text{ cylinder} \rightarrow \text{Pressure regulator directly attached to the cylinder} \rightarrow \text{Emergency shutdown valve directly attached to the outlet of the pressure regulator} \rightarrow \text{Flow meter} \rightarrow \text{Fuel Cell} \]
 v. The flow meter must be fixed at the inlet of the fuel cell. Both must be at the same pressure.

b) Hydrogen cylinders
 i. FC-powered vehicle must use a compressed hydrogen cylinder, referred to hereafter as a cylinder, as provided by the Organisers during the entire event. Only one cylinder may be fitted to a vehicle at any time.
 ii. Cartridges and any other means of hydrogen storage are not permitted.
 iii. For Prototype vehicles, the following cylinders will be provided:
 Europe: B04 cylinder, 0.4 litre of hydrogen at 200 bar (6 cm/32 cm) 1.4 kg
 Americas: Exchange cylinder ~ 152 bar 5.3” X 17.1” (13.5 cm x 43.4 cm), 8.6 lbs. (3.9 kg)
 Asia: Catalina MD cylinder, 2.9 litre of hydrogen @ 139 bar (11.1 cm x 42.4 cm), 2.4 kg
 iv. For UrbanConcept vehicles, the following cylinders will be provided:
 Europe: B1 cylinder, 1 litre of hydrogen at 200 bar (10 cm x 35 cm) 2.57 kg
 and
 B04 cylinder, 0.4 litre of hydrogen at 200 bar (7 cm/33cm) 1.4 kg
 Americas: Exchange cylinder ~ 152 bar 5.3” X 17.1” (13.5 cm x 43.4 cm), 8.6 lbs. (3.9 kg)
 Asia: Catalina MD cylinder, 2.9 litre of hydrogen @ 139 bar (11.1 cm x 42.4 cm), 2.4 kg
 v. Cylinders must be installed on the vehicle under the supervision of a Fuel Marshall. Participants are not allowed to keep any cylinders in their possession overnight. Upon arrival at the circuit, Team Managers must contact the Fuel Marshall, who will organise all relevant logistics.
c) Ventilation

The vehicle body must allow for ventilation at the highest point of the fuel cell compartment, providing an orifice with a minimum opening of 5 cm². Another 5 cm² opening must be provided at the highest point of the driver compartment.

d) Hydrogen detector

i. A hydrogen sensor must be installed in the fuel cell compartment, near the main ventilation orifice mentioned above. This hydrogen sensor must drive the emergency shutdown valve and relay mentioned below. The trip level of the hydrogen sensor must be tuned to 25% of the LEL (Lower Explosive Limit) of hydrogen, i.e. 1% of hydrogen in air. A test will be carried out during the technical inspection.

For commercial Fuel Cells with integrated H₂ detector it is still required to fit a H₂ sensor as described above.

ii. The reset of the hydrogen detector, i.e., the hydrogen sensor and its electronics, must be done manually via a switch located in the fuel cell compartment. This switch must not be accessible by the Driver from the cockpit.

e) Emergency shutdown valve and relay

i. The hydrogen supply circuit must be equipped with a solenoid emergency shutdown valve. This valve must be normally closed in the absence of electricity.

ii. The power supply to the motor must be automatically cut off at the same time as the above emergency shutdown valve is activated. This is to be achieved by a suitable fail-safe relay.

iii. This valve and relay must be activated by any of the following three scenarios:

1. Through hydrogen detection as explained above.

2. Through the emergency push-button located on the outside of the vehicle. The emergency shutdown sticker provided by the Organisers must be positioned on the vehicle body to clearly indicate the place of this emergency push-button. See Article 1:f).

3. Through another emergency push-button, accessible by the Driver in driving position.

iv. In case of activation by one of these three scenarios, the valve and relay must act simultaneously.

v. These three scenarios will be tested during Technical Inspection and before each attempt.

f) Pipes and connections of the hydrogen circuit

i. In all cases, piping and connectors of the hydrogen circuit must be designed for hydrogen use. The Team Manager must be able to present during the technical inspection the technical data sheets from the manufacturer of these piping and connectors to show that they are suitable for hydrogen use.

The use of PTFE pipes is recommended. PU tubing should not be used as this tends to leak.
ii. If the pressure in the hydrogen circuit is higher than 1.5 bar absolute (= 0.5 bar above atmospheric pressure) piping must be made of steel and connectors must be screw/compression type.

iii. If the pressure in the hydrogen circuit is lower than 1.5 bar absolute (= 0.5 bar above atmospheric pressure) flexible piping and unscrewed connectors are accepted.

iv. PTFE (Teflon) sealing tape must not be used because it can damage the flow meter. In any case Participants are responsible for damage to the flow meter due to wrong connections.

g) Purge pipe
 If a purge pipe is needed, its end must be located outside the vehicle.

h) Measurements and Equivalencies
 i. The consumption of hydrogen is measured by an embedded flow meter. The flow meter will be checked/calibrated by the Organisers before Technical Inspection.

 ii. The flow meter must be purchased from the Organisers.

 iii. The volume of hydrogen consumed is posted in normal litres. The display of the flow meter must be easy to read from outside the vehicle, when the vehicle body is closed. It must be inaccessible by the Driver in normal driving position.

 iv. The serial number on the hydrogen flow meter must not be covered or removed.

i) Oxygen and air reserves
 The use of non-replaced oxygen or compressed air reserves is forbidden.

j) Super Capacitors
 i. If an embedded electric storage device is part of the power-train, it must be of capacitor type, referred to hereafter as ‘Super Capacitor’. Other types of embedded electric storage device (Pb, NiMh, etc. batteries) are forbidden.

 ii. The state of charge of the Super Capacitor will be checked before and after each run by measuring the Super Capacitor voltage. Two measurement points (Super Capacitor voltage + and – a labelled “Super Capacitor voltage”) must be installed outside the vehicle to allow the voltage measurement on the starting line.

 iii. The voltage registered after the run must be at least equal to the voltage registered before the run. In the event of the contrary, the Super Capacitor must be re-charged by running the fuel cell until their voltage is equal to the voltage registered before the run. The additional time required to recharge the Super Capacitor by running the fuel cell after the competition is added to the recorded time of the relevant run

 iv. The maximum Super Capacitor voltage must not exceed that referenced in Article 1:a).

k) Fuel cell starter battery
 i. Accessory battery
 If the accessory battery can be electrically isolated from the fuel cell output, the accessory battery can be used to start the fuel cell. The battery is considered electrically isolated when energy from the accessory battery cannot contribute to vehicle propulsion.
ii. External battery
 If the accessory battery cannot be isolated from the fuel cell output, an external battery must be used on the starting line to start the fuel cell system.

1. As soon as the vehicle starts to move, this battery must be unplugged.

2. Two connectors must be installed outside the vehicle to allow a quick connection and fuel cell system start on the starting line. These external connectors must be securely fastened to the vehicle.

iii. As mentioned in Article 1:i) it is mandatory to power the hydrogen detector using the accessory battery. This battery must also power the emergency shutdown valve, relay and lighting system for UrbanConcept vehicles.

l) Electrical circuit/Electronics
 i. All wiring associated with the accessory battery circuit must be clearly distinguishable from the propulsion system by physical isolation or the use of different wire colours.

ii. A fuse must be installed on the positive terminal of the fuel cell stack. Its melting current (expressed in Amps) must be less than the active area (expressed in square centimetres) of one cell of the stack. For instance, if the active surface of one cell of a 20 cell stack is 60 cm², the melting current of the fuse must not exceed 60 A.

iii. If a Super Capacitor is used in the circuit, a fuse must be installed on the positive terminal of the Super Capacitor pack. The fuse rating must be less than or equal to the maximum usable power divided by the rated voltage.

m) Other equipment
 Compressors, fans and coolers for the fuel cell system must be powered by the fuel cell or Super Capacitor, not by the accessory battery.

Article 66: NOT USED

Article 67: BATTERY ELECTRIC VEHICLES

a) The drive train in the ‘Battery Electric’ category is restricted to a maximum of one electric storage device, and up to two electric motors, with associated control units. The electric motors may be purchased, purchased-and-modified, or purpose-built. The motor controller MUST be purpose-built for Shell Eco-marathon. Modifications to purchased motor controllers or the use of purchased motor controller evaluation kits are not acceptable. Motor controllers built from sub-components such as single-board computers, power stages, etc. are encouraged. If a motor controller is built incorporating one or more single printed circuit boards (PCBs), the text “SEM” needs to be included in the mask of the PCB etching. If the motor controller includes controlling software, the software must be developed or integrated for Shell Eco-marathon.

b) Only Lithium-based batteries are permitted as electric storage devices.

c) The vehicle must be equipped with a Battery Management System (BMS) to control and protect the battery against risk of fire as defined in Article 1:c).
Any BMS for propulsion batteries must provide an AUTOMATIC isolation of this battery in the event of any measured parameters getting out of their designed range.

d) The Lithium-based battery and any accessory circuits are subject to the maximum voltage defined in Article 1:a).

e) Participants are required to present electrical schematics at Technical Inspection. See c)

f) All batteries must be placed outside the Driver’s compartment behind the bulkhead and securely mounted. Bungee cords or other elastic materials are not permitted for securing the battery. See d)

g) All vehicles must be equipped with one joulemeter located between the battery and the vehicle electrical system to measure all the electrical energy used by the vehicle.

h) The Organisers will provide the joulemeter for the duration of the event.

i) The joulemeter must be positioned so that the display can be easily read and reset from the outside of the vehicle without the removal of any vehicle body components. It is acceptable to access the joulemeter from outside the vehicle through a hinged door.

j) The joulemeter must be inaccessible to the Driver in his or her normal driving position.

k) All electrical circuits must be protected as defined in Article 1:g).

l) On the starting line, Fuel Marshalls will reset the joulemeter to zero, and then the vehicles will have access to the track to start their attempt under the same distance and time conditions as specified for their respective vehicle class.

m) At the finish line, Fuel Marshalls will read the joulemeter display.

n) All ‘Battery Electric’ vehicles which complete a successful run will be classified in descending order of fuel economy, expressed in distance/kWh, where distance is either miles or km depending on the region.
4D – INTERNAL COMBUSTION (GASEOUS FUEL)

Article 68: CNG

CNG vehicles must comply with all rules of Section 4B INTERNAL COMBUSTION (LIQUID FUELS) as described in Article 59:, Article 60:, Article 63: and Article 64:. In addition the following rules apply:

a) The CNG system must be designed as follows:
 - Methane cylinder/cartridge → Regulator assembly provided by the Organisers → hose → injector

 Only the use of electronic injection is permitted. The use of vaporisers is not allowed.

b) Gas cylinder

 i. The following cylinders will be provided:
 - Asia: Catalina MD cylinder, 2.9 litre, 70 bar (11.1 cm x 42.4 cm), 2.4 kg
 - Americas: Catalina MD cylinder, 2.9 litre, 70 bar (11.1 cm x 42.4 cm), 2.4 kg
 - Europe: Cylinder, 2.0 litre, 70 bar (10 cm x 41 cm), 1.5 kg

 ii. For safety reasons, the cartridge/cylinder must not exceed a temperature of 50°C at any time. To prevent high temperature the cartridge/cylinder must not be installed above the battery, directly exposed to solar radiation and close to the exhaust system.

 iii. Cylinders must be installed on the vehicle under the supervision of a Fuel Marshall. Participants are not allowed to keep any cylinders in their possession overnight. Upon arrival at the circuit, Team Managers must contact the Fuel Marshall, who will organise all relevant logistics.

 Safety tip: Cylinders should be carried carefully as dropping the cylinder could damage the valve and cause gas leakage

c) Technical Inspection/Measurement

 The fuel system must be easily accessible for inspection and measurements. The gas consumption will be measured gravimetrically. At the start a Fuel Marshall will weigh the entire fuel system (including cylinder/cartridge, pressure regulator, shut down valve, hose and injector). All these components must be compact and easily detachable for weighing purposes. After completion of a successful run, the entire fuel system will be de-installed and weighed again on the same balance. This handling of the fuel system, including mounting to and dismounting from the vehicle and transporting it to the weighing room must be performed by a competent team member who has a valid garage access pass. The entire process of handling the fuel system will be supervised by a Fuel Marshall who will also perform the weighing will which needs to be witnessed by a Team Member.

d) Methane detector

 i. A methane sensor must be installed in the energy compartment, near the main ventilation orifice mentioned below. This Methane sensor must drive the emergency shutdown valve
and relay mentioned below. The trip level of the methane sensor must be tuned to 25% of the LEL (Lower Explosive Limit) of methane, i.e., 1% of methane in air.

ii. The reset of the methane detector must be done manually via a switch located in the energy compartment. This switch must not be accessible by the Driver from the cockpit.

e) Pressure regulator/Shut down valve/Pressure relief valve

i. The vehicle must be equipped with the mini-Regulator provided by the Organisers at the event. The mini-Regulator comprises of a pressure gauge, pressure regulator, shutdown valve, and a pressure relief valve assembly.

ii. The maximum outlet pressure is limited to 3 bars relative. A pressure sensor is allowed between pressure regulator and injector for injection management.

iii. A 6 mm (external diameter) line must connect the outlet of the regulator to the fuel injector.

iv. A 10 mm (external diameter) discharge line must be connected to the relief valve of the mini-Regulator and must evacuate outside, via the top of the vehicle.

v. The shutdown valve is normally closed in the absence of electricity.

vi. The power supply to the ignition/injection must be automatically cut off at the same time as the above shutdown valve is activated. This is to be achieved by a suitable fail-safe relay.

vii. This valve and relay must be activated by any of the following three scenarios:

1. Through methane detection by the methane sensor
2. Through the emergency push-button located on the outside of the vehicle
3. Through another emergency push-button, accessible by the Driver in driving position

viii. In case of activation by any of these scenarios, the valve and relay must act simultaneously.

ix. These three scenarios will be tested during Technical Inspection and before each attempt.

f) Ventilation

The vehicle body must allow for ventilation at the highest point of the energy compartment, providing an orifice with a minimum opening of 5 cm². Another 5 cm² opening must be provided at the highest point of the driver compartment.

g) Pipes and connections of the gas circuit

i. In all cases, piping and connectors of the gas circuit must be designed for Methane use. The Team Manager must be able to present during the technical inspection the technical data sheets from the manufacturer of these piping and connectors to show that they are compatible for Methane use.

ii. Hoses and connectors must resist a pressure of 9 bar relative, 3 times the maximum operating pressure of 3 bar relative (proof is required).
5. ON-VEHICLE TELEMETRY EQUIPMENT

Article 69: GENERAL

a) All vehicles shall carry a SEM telemetry system. This system is composed of an on-board computer, external antennae and one or more energy measurement device, dependent on the vehicle’s energy type.

b) The Organisers will be responsible for supply of this system to teams upon their arrival at each event. Instructions and support will be supplied by the Organisers.

Article 70: ONBOARD COMPUTER

a) The on-board computer is to be mounted by Teams, in the energy compartment of their vehicle. Mounting instructions will be provided by the Organiser to Teams together with the telemetry system prior to Technical Inspection. The on-board computer dimensions and weight will be communicated to teams in January 2017, but it shall measure no more than 16 cm x 5 cm x 6 cm and weigh less than 600 g.

b) The on-board computer must be powered by a DC-to-DC converter installed in all vehicles. See Article 1:m). The on-board computer must be mounted within 1 meter of the DC-to-DC converter. * Teams must provide their own DC-to-DC converter.

Article 71: EXTERNAL ANTENNAE

Each on-board computer is accompanied with an antennae pod. This pod shall be mounted on the outside of vehicles in such a position that it has an unobstructed view of the sky. The mounting of this pod requires the presence of a 32 mm diameter hole in the body of the vehicle. The hole shall be positioned on the top of the vehicle’s body and within 1 meter cable length of the on-board computer.

Article 72: HYDROGEN FLOW METER

All UrbanConcept and selected (at discretion of the Organisers) Prototype Hydrogen Fuel Cell vehicles shall be fitted with a hydrogen flowmeter capable of communicating with the on-board computer. The on-board computer will be connected to the flowmeter via a 1 meter cable.

Article 73: LIQUID FLOWMETER

a) All UrbanConcept and selected (at discretion of the Organisers) Internal Combustion Engine vehicles shall be fitted with a liquid flowmeter. The on-board computer will be connected to the liquid flowmeter via a 1 meter cable.

b) The liquid flowmeter kit, along with installation instructions, will be provided prior to Technical Inspection.

Article 74: JOULEMETERS

a) Joulemeters will be used to measure the vehicle electrical energy and will be installed in all vehicles, see Article 1:j). The joulemeter will be connected to the on-board computer with a 1 meter cable.
6. AWARDS AND PRIZES

6A – ON-TRACK AWARDS

Article 75: ON-TRACK AWARD OVERVIEW AND PRIZES

All on-track prizes and trophies below are awarded twice, once for Prototype and once for UrbanConcept vehicles, in the three energy categories of Internal Combustion, Hydrogen Fuel Cell, and Battery Electric.

<table>
<thead>
<tr>
<th>SHELL ECO-MARATHON ON-TRACK AWARD</th>
<th>ASIA/AMERICAS</th>
<th>EUROPE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Combustion Winner</td>
<td>US$ 3,000</td>
<td>€2,500</td>
<td>Prize Money, Trophy, on-stage Winners Ceremony</td>
</tr>
<tr>
<td>Internal Combustion Runner-up</td>
<td>US$ 2,000</td>
<td>€1,700</td>
<td>Prize Money, Trophy</td>
</tr>
<tr>
<td>Internal Combustion 3rd place</td>
<td>US$ 1,500</td>
<td>€1,250</td>
<td>Prize Money only</td>
</tr>
<tr>
<td>Internal Combustion 4th place</td>
<td>US$ 1,000</td>
<td>€800</td>
<td>Prize Money only</td>
</tr>
<tr>
<td>Internal Combustion 5th place</td>
<td>US$ 750</td>
<td>€600</td>
<td>Prize Money only</td>
</tr>
<tr>
<td>Internal Combustion 6th place</td>
<td>US$ 500</td>
<td>€400</td>
<td>Prize Money only</td>
</tr>
<tr>
<td>Battery Electric Winner</td>
<td>US$ 3,000</td>
<td>€2,500</td>
<td>Prize Money, Trophy, on-stage Winners Ceremony</td>
</tr>
<tr>
<td>Battery Electric Runner-up</td>
<td>US$ 2,000</td>
<td>€1,700</td>
<td>Prize Money, Trophy</td>
</tr>
<tr>
<td>Battery Electric 3rd place</td>
<td>US$ 1,500</td>
<td>€1,250</td>
<td>Prize Money only</td>
</tr>
<tr>
<td>Battery Electric 4th place</td>
<td>US$ 1,000</td>
<td>€800</td>
<td>Prize Money only</td>
</tr>
<tr>
<td>Battery Electric 5th place</td>
<td>US$ 750</td>
<td>€600</td>
<td>Prize Money only</td>
</tr>
<tr>
<td>Battery Electric 6th place</td>
<td>US$ 500</td>
<td>€400</td>
<td>Prize Money only</td>
</tr>
<tr>
<td>Hydrogen Fuel Cell Winner</td>
<td>US$ 3,000</td>
<td>€2,500</td>
<td>Prize Money, Trophy, on-stage Winners Ceremony</td>
</tr>
<tr>
<td>Hydrogen Fuel Cell Runner-up</td>
<td>US$ 2,000</td>
<td>€1,700</td>
<td>Prize Money, Trophy</td>
</tr>
<tr>
<td>Hydrogen Fuel Cell 3rd place</td>
<td>US$ 1,500</td>
<td>€1,250</td>
<td>Prize Money only</td>
</tr>
<tr>
<td>Hydrogen Fuel Cell 4th place</td>
<td>US$ 1,000</td>
<td>€800</td>
<td>Prize Money only</td>
</tr>
<tr>
<td>Hydrogen Fuel Cell 5th place</td>
<td>US$ 750</td>
<td>€600</td>
<td>Prize Money only</td>
</tr>
<tr>
<td>Hydrogen Fuel Cell 6th place</td>
<td>US$ 500</td>
<td>€400</td>
<td>Prize Money only</td>
</tr>
</tbody>
</table>
6B – OFF-TRACK AWARDS

Participating Teams may choose to apply for a maximum of two Off-track Awards; or for three if one application is for the Safety Award.

Applications for all Off-track Awards must be relevant for and related to the work carried out for the Shell Eco-marathon project. Previous award winners cannot re-apply on the basis of the same vehicle design, innovation, communications or safety campaign. Submission must be clearly different from previous winning applications.

Applications for all Off-track Awards must be made in English language.

In order to submit an application for a Shell Eco-marathon Off-track Award, the required documents must be uploaded using the online team registration system. Please refer to Chapter II of the Shell Eco-marathon 2017 Rules of your regional event for the applicable submission deadline.

For all awards, the juries will make their first selection based on the submission received prior to the competition. All teams shortlisted for an award may then receive a visit by the judges during the event and are required to make a team member available to them at their request. The judges may ask further questions, wish to see particular evidence or discuss the team’s submission in more detail.

By submitting an Off-track Award entry the Team agrees for the Organisers to publish their entry as deemed necessary to recognise the achievement and provide coaching to other Teams.

Teams cannot apply for the “Perseverance & Spirit of the Event” award.

Article 76: OFF-TRACK AWARD OVERVIEW AND PRIZES

All off-track prizes and trophies below are awarded once. Winners will receive the respective prize money, as well as a trophy on-stage during the Awards Ceremony.

<table>
<thead>
<tr>
<th>SHELL ECO-MARATHON OFF-TRACK AWARD</th>
<th>ASIA/AMERICAS</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications Award</td>
<td>$3,000</td>
<td>€2,500</td>
</tr>
<tr>
<td>Vehicle Design Award Prototype</td>
<td>$3,000</td>
<td>€2,500</td>
</tr>
<tr>
<td>Vehicle Design Award UrbanConcept</td>
<td>$3,000</td>
<td>€2,500</td>
</tr>
<tr>
<td>Technical Innovation Award</td>
<td>$3,000</td>
<td>€2,500</td>
</tr>
<tr>
<td>Safety Award</td>
<td>$3,000</td>
<td>€2,500</td>
</tr>
<tr>
<td>Perseverance and Spirit of the event Award</td>
<td>$3,000</td>
<td>€2,500</td>
</tr>
</tbody>
</table>

Article 77: COMMUNICATIONS AWARD

Objective

To run the most impactful and successful integrated Communications campaign showing the efforts to promote the team ahead of the Shell Eco-marathon competition in 2017. The winner will be the team that demonstrates best the continuous communicational and promotional activities of the team on the road to the Shell Eco-marathon (SEM) competition.
a) Overview

An integrated Communications campaign, using different media channels and engagement activities, is integral for students to promote their teams ahead of Shell Eco-marathon. Participating teams are required to create, run and evaluate a communications plan with various activities to show the team’s trajectory ahead of the competition.

When preparing the campaign, teams are encouraged to use a wide range of media channels, from traditional media (press, radio and TV), to online tools (websites, blogs) or social media networks (Facebook, Twitter, YouTube, Instagram etc.).

The winner will be judged on the quality and creativity of the content, the volume of activity as well as the impact (potential reach) of the campaign (i.e. media impressions; website visits; YouTube video views; Facebook likes; event attendance, etc.).

As we evaluate the team’s trajectory before Shell Eco-marathon, the application should indicate when the campaign is launched and run, and should include planned activities after the submission deadline.

Remember that engaging with the Shell Eco-marathon online and social media channels is also an important part of the campaign. Teams applying to the Communications Award are invited and expected to join the regional SEM Facebook groups, follow SEM on Twitter, and use the #SEM2017 hashtag whenever possible.

Teams must note that the effectiveness of the Communications campaign will be judged in activities related to Shell Eco-marathon only. This includes, for instance, the unveiling of the vehicle, press conferences, photos or videos of the team and the car, or any social media activity. Participation in other competitions without a clear reference to Shell Eco-marathon will not be taken into consideration.

In order to be eligible for the Shell Eco-marathon Off-Track Communications Award, the team must have successfully passed Technical Inspection.

b) How to participate

Participation in this competition is voluntary. Teams interested in applying to the Off-Track Communications Award must submit an application via the online Team Registration web site. This application must consist of one (01) document (.pdf format) that should be simple and straightforward, and should contain:

i. Communications Plan: A short summary (no more than 500 words) indicating the main idea, objectives, strategy and timeline of the Communications Campaign.

ii. Impact Analysis: A summary report (no more than 500 words) evaluating the success of the Communications Campaign compared with its objectives. Teams should also submit the main results (numbers) gathered throughout the campaign (e.g. event attendees, media impressions; video views; social media likes and shares; re-Tweets; etc.).

iii. Campaign portfolio: Teams should collate and share all (or the best) examples of their campaign. This includes, for instance: press clips; event photos and footage; posters and brochures; creative infographics; websites links; social media channels (Facebook, Twitter, Instagram, Google+, YouTube, Tumblr, Vimeo, Vine etc.); blog posts; screen shots of social media posts; links to YouTube, Vimeo or Vine videos, etc.
Article 78: VEHICLE DESIGN AWARD

a) Objective

This prize recognises innovative design research and execution and will be awarded to the team, which presents the most original and coherent vehicle in terms of aesthetics, ergonomics, technical feasibility, choice of materials and eco-friendliness. Each of these five criteria will be weighted equally in the Jury’s decision. Due to their non-comparable designs there will be one award each for the Prototype and UrbanConcept categories.

b) Overview

Teams are required to describe their design approach, the basis for their research, factors which make this design special and issues and solutions encountered during the vehicle production process. Photographs, drawings and / or animations must be included to illustrate the process. Teams shortlisted for the Award will be visited by the Jury during the event to answer further question and present their vehicle.

In order to be eligibility for this Award the winning team must have at least one valid competition attempt, i.e. the team must have a result on the score board.

c) How to participate

Application for this award is voluntary. Teams interested in winning the Vehicle Design Award must submit a summary in .pdf format which does not exceed 1,500 words plus photographs, drawings or animations. This document must contain as a minimum the following information:

i. Description of the original design idea the team wanted to develop and why

ii. Seven images of the vehicle (photographs or drawings) which represent the car, such as:

- 3/4 front perspective view
- 3/4 rear perspective view
- Direct Front view
- Direct Rear view
- Side view
- Top view
- Cockpit view

iii. A brief project timeline and overview of the team structure and work allocation

iv. When was this vehicle registered for the first time for Shell Eco-marathon?

v. What are the new developments this year (if registered before)?

vi. Details about research and tests done to prove the vehicle’s energy-efficiency

vii. Details about vehicle safety and driver ergonomics aspects

viii. Details about the eco-friendly materials used and how well they can be recycled

ix. The weight of the car and details on how the team managed weight reduction
Article 79: TECHNICAL INNOVATION AWARD

a) Objective

This award is presented to the Team which demonstrates outstanding technical ingenuity along with optimal use of new materials, components and inventions in their drive train, chassis, body, instrumentation and tyres.

b) Overview

Teams will be required to explain their innovative concept, its features and its benefits, how it relates to the Shell Eco-marathon competition and the potential it has for ‘real world’ application. Teams are strongly encouraged to consider all intellectual property developed in conjunction with the Shell Eco-marathon programme as valuable assets and seek professional advice about its protections through patents or trademarks before publishing.

In order to be eligibility for this Award the winning team must have at least one valid competition attempt, i.e. the team must have a result on the score board.

c) How to participate

Application for this award is voluntary. Teams interested in winning the Technical Innovation Award must submit an application in .pdf format which is not to exceed 1,500 words plus photographs, drawings or animations as applicable.

Article 80: SAFETY AWARD

a) Objective

This award aims to highlight the importance of structural, process and behavioural safety in the Shell Eco-marathon programme and encourages all participating teams to actively consider and implement safe practices in their daily work. It challenges all team to review established practices, inspect tools and equipment as well review their procedures in order to implement changes which lead to higher safety standards.

b) Overview

In order to win the award, the team must demonstrate excellent understanding of safe design concepts and the application to their car and the manufacturing process. Furthermore, the winning team must be able to demonstrate safe working practices as well as an overall proactive approach to their own and other people’s safety at the event. In their submission the team will also explain which changes they have implemented to achieve higher standards of safety.

In order to be eligibility for this Award the winning team must have successfully passed technical inspection.

c) How to participate

Application for this award is voluntary. Teams interested in winning the Safety Award must submit an application in .pdf format which is not to exceed 1,500 words plus supporting photographs, documents, drawings or animations as applicable.
Article 81: PERSEVERANCE AND SPIRIT OF THE EVENT AWARD

This Award is presented to the team which, in the opinion of the Organisers, symbolises best the spirit and values of Shell Eco-marathon through their actions, which can involve but are not restricted to:

- Overcoming great obstacles in order to attend Shell Eco-marathon;
- Mastering exceptional challenges while participating in Shell Eco-marathon;
- Supporting other participants to help them overcoming significant challenges or obstacles;
- Keeping high spirits, showing outstanding resilience, resolve and resourcefulness; and
- Teams cannot apply for this award.

Article 82: INTELLECTUAL PROPERTY

Any work performed in the preparation of vehicles for use in the Shell Eco-marathon programme may result in the creation of intellectual property. Teams are encouraged to consider all intellectual property created during the Shell Eco-marathon programme as valuable assets, and to seek professional advice.