

CESIO 2008 Paper O-C07

Reconstitutable Liquid Laundry Detergents for Reduced Environmental Impact

Julian Barnes*, Kirk Raney** and Greg Shpakoff***

- *Shell Global Solutions, Amsterdam, Netherlands
- ** Shell International Exploration and Production, Houston, TX, USA (formerly Shell Global Solutions, USA)
- ***Shell Global Solutions, Houston, TX, USA

Reconstitutable Liquid Detergent – Contents

- Concept and advantages
- Approach: Dissolution of concentrates
- Formulation routes to faster reconstitutability
- Laboratory test: Relevance to consumer experience
- Conclusions

Reconstitutable Liquid Detergent – Concept and Advantages

- Background: Liquid detergents continue to grow globally and are becoming the form of choice in many markets
- Reconstitutable concept:
 - Consumer adds concentrate to re-usable bottle, dilutes (e.g. at 1:1 or 1:2)
 with tap water at home
 - Final product dosed at similar volume to regular HDLs
 - Concept similar to fabric softeners
- Advantages:
 - Reduced environmental impact (from packaging and transportation of liquids)
 - Reduced costs associated with the above
 - Accurate dosing by consumer

Reconstitutable Liquid Detergent – Approach and Requirements

- Approach: Use High Active Matter (HAM) anionic / non-ionic mixtures:
 - Alcohol Ethoxylate (AE)
 - replaces water as the solvent
 - Alcohol ethoxysulfates and alkybenzene sulfonates
 - The acid forms neutralised with concentrated NaOH solution or Triethanolamine (TEA) in the presence of AE
 - Water <10%w
- Requirements:
 - Acceptable cleaning properties
 - Fast dissolution into water down to 10°C and no gel formation in bottle
 - Minimal inert ingredients to minimise packaging and costs

Test Methods

- Dynamic Solution Time Measurement
 - Measures time to fully dissolve surfactant concentrate in water
 - 0.2 ml concentrate added with stirring to 50 ml water at 10, 25 and 38°C
 - Strong formulation dependence
 - Fast dissolution required, target <30 sec at 10°C
- Gel Region Measurement
 - Measures gel / liquid boundary for different water / concentrate ratios and temperatures
 - Temperature is reduced in stages from 70°C

Higher Temperatures and Shorter-Chain Alcohol Ethoxylates Yield Faster Dissolution Times

✓ AE 911-6 gives <20 sec solution time at 25 and 38 °C

Test Formulation Concentrates

With LAS:	Without LAS:
60% AE	60% AE
17.5% AES (Na or TEA salt)	35% AES (Na or TEA salt)
17.5% C12 LAS (Na or TEA salt)	
5% Water	5% Water

LAS = Linear alkylbenzene sulfonate

AE = alcohol ethoxylate

AES = alcohol ethoxysulfate

TEA = triethanolamine (a cation known to reduce/prevent gels)

NOTE:

- 1) Both formulations representative of US-type, 1/8 cup, unbuilt HDLs
- 2) Alcohol Ethoxylates: modified OXO process alcohols, with EO content of 5-9

Solubility (at 25°C) of <u>LAS-free</u> Formulations: Shorter chain, 5-mole Ethoxylates with TEA are best

Solubility (at 25°C) of <u>LAS-containing</u> Formulations: Shorter chain, 5-mole Ethoxylates with TEA are best

✓ NOTE: When AES = 1213-6.5S same trends seen as above, with / without LAS

Routes to Faster Reconstitutability

- AE: Alcohol chain length and EO effect
 - Shorter chain alcohols with 5 mole EO best
- AES: Cation effect
 - TEA better than Na

- Now, investigate:
 - Effect of AES and AE components based on the same AE
 - Effect of additives such as <u>ethanol</u> and <u>monoethanolamine</u>
 (MEA)

Routes to Faster Reconstitutability: For AES and AE based on same AE, Short Chain 5-mole Ethoxylates Yield Fastest Dissolution Times at 25°C

- ✓ Similar trend seen with LAS-containing formulations
- ✓ In 5 out of 6 cases, TEA salt gave best solubility
- √ 1-2 min. solution times still too long! Need to explore additives

Routes to Faster Reconstitutability: Base formulation has significant gel region

Base formulation (no additives):

60% AE 11-5, 17.5% AES 11-5S(TEA), 17.5% C12LAS (TEA)

Routes to Faster Reconstitutability: Use of Additives/Co-solvents Prevents Gels

Best Prototype Formulation with Additives Dissolves Efficiently at Low Temperature

Formulation: 60% AE 11-5; 17.5% AES 11-5S(TEA);17.5% C₁₂ LAS(TEA)

Formulation Limits for Good Reconstitutability*

AES : LAS Ratio	Anionic Surfactant (wt %)	Salt Composition
1:1	40 <u>max</u>	100% TEA
1.33 <u>max</u> : 1	35	100% TEA
1:1	35	66% TEA, 33% Na <u>max</u>

^{*}Based on most promising system:

AE 11-5 / AES 11-5S (TEA) and C12 LAS (TEA) with 5% ethanol and 5% MEA.

Formulation flexibility is possible, but slower dissolution when:

- ✓ Total % anionic or % AES increased,
- ✓ Levels of additives reduced, or
- ✓ Na salts substituted for TEA salts

Laboratory vs. Consumer Solution Times

- The lowest water temperature of 10°C was chosen to represent the coolest (and most difficult) tap water temperature
- The laboratory test (spinning stir bar in a volume of liquid) is rather "mild" and solution times will be long compared with consumer experience with reconstitutability
- A consumer shaking a concentrate with water would experience good mixing within several shakes, if the formula takes 20-30 seconds to dissolve in the laboratory test

Conclusions: Reconstitutable Liquid Detergents

- A consumer reconstitutable, unbuilt, formulation successfully developed
- Advantages, compared to dilute, direct-use formulations:
 - Reduced environmental impact and costs
 - Maintain ease of use and accurate dosing by the consumer
- Use of MEA + ethanol as additives allows rapid dilution with cold water
 - The practical formulation identified contained a <u>short carbon chain</u> AE 11-5,
 <u>TEA salt</u> of the AES, and the TEA salt of C12LAS
- Flexibility in composition is possible, within certain constraints
- Enzyme stability is a potential benefit of the reconstitutability approach:
 - Although not studied, undiluted (low water) concentrates expected to give improved long-term stability

Acknowledgements

 Elizabeth Endler and Warren Schmidt, and other colleagues in the Technology Group

Thank you for your attention